In the mathematical theory of random processes, the Markov chain central limit theorem has a conclusion somewhat similar in form to that of the classic central limit theorem (CLT) of probability theory, but the quantity in the role taken by the variance in the classic CLT has a more complicated definition.
the initial distribution of the process, i.e. the distribution of , is the stationary distribution, so that are identically distributed. In the classic central limit theorem these random variables would be assumed to be independent, but here we have only the weaker assumption that the process has the Markov property; and
is some (measurable) function for which
Now let
Then as we have
or more precisely, for every (measurable) set of real numbers,