Jump to content

Process graph

From Wikipedia, the free encyclopedia
This is an old revision of this page, as edited by 2001:4c4c:1560:c300:4547:4204:a176:a2e0 (talk) at 14:26, 8 April 2019 (Applications). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

In graph theory a process-graph or P-graph is a directed bipartite graph used in workflow modeling.

The vertices of the graph are of two types, operation (O) and material (M). The two vertex types form two disjunctive sets. The edges of the graph link the O and M vertices. An edge from an operation vertex (O) connects to a material vertex (M) if M is the output of O, such as a 'document' (material) that is output by a 'write-up' (operation). An edge from M to O indicates that M is an element of the input set of O, e.g. a document may be part of the input to a 'review' operation.

Applications

Process-graph is in use in different fields of application in [[1]].[1] An example for an application is Process Network Synthesis.[2] The method is in scientific use to find optimum process chains in chemical formulas, energy technology networks and other optimisation problems like evacuation routes in buildings or transportation routes.

References

  1. ^ Friedler, F.; Huang, Y.W.; Fan, L.T. (1992). "Combinatorial Algorithms for Process Synthesis". Computers Chemical Engineering. 16 Suppl. 1: 313–320. doi:10.1016/S0098-1354(09)80037-9.
  2. ^ Friedler, F.; Varga, J. B.; Feher, E.; Fan, L. T. (1996). "Combinatorially Accelerated Branch-and-Bound Method for Solving the MIP Model of Process Network Synthesis". State of the Art in Global Optimization. Nonconvex Optimization and Its Applications. Vol. 7 (7 ed.). Dordrecht: Kluwer Academic Publishers. pp. 609–626. doi:10.1007/978-1-4613-3437-8_35. ISBN 978-0-7923-4351-6.