User:Cecilia.di.bernardi/sandbox
DNA barcoding is broadly used to analyse the diet of both invertebrate and vertebrate organisms[1][2] and further detect and describe their trophic interactions[3][4]. This approach is based on the identification of consumed species by characterization of DNA present in dietary samples[5], e.g. individual food remains, regurgitates, gut and fecal samples, homogenized body of the host organism (for example with insects[6]).
The DNA sequencing approach to be adopted depends on the diet breadth of the target consumer. For organisms feeding on one or only few species, traditional Sanger sequencing techniques can be used. For polyphagous species with diet items more difficult to identify, it is conceivable to determine all consumed species using NGS methodology[7].
The barcode markers utilized for amplification will differ depending on the diet of the organism. For herbivore diets, the standard DNA barcode loci will differ significantly depending on the plant taxonomic level[8]. Therefore, for identifying plant tissue at the taxonomic family or genus level, the markers rbcL and trn-L-intron are used, which differ from the loci ITS2, matK, trnH-psbA (noncoding intergenic spacer) used to identify diet items to genus and species level[9]. For animal prey, the most broadly used DNA barcode markers to identify diets are the mitochondrial Cytocrome C oxydase (COI) and Cytochrome b (cytb)[10]. When the diet is broad and diverse, DNA metabarcoding is used to identify most of the consumed items[11].
Advantages
A major benefit of using DNA barcoding in diet assessment is the ability to provide high taxonomic resolution of consumed species[12]. Indeed, when compared to traditional morphological analysis, DNA barcoding enables a more reliable separation of closely related taxa reducing the observed bias [13][14]. Moreover, DNA barcoding enables to detect soft and highly digested items, not recognisable through morphological identification[15]. For example, Arachnids feed on pre-digested bodies of insects or other small animals and their stomach contenct is too decomposed and morphologically unrecognizable using traditional methods such as microscopy[16].
When investigating herbivores diet, DNA metabarcoding enables detection of highly digested plant items with a higher number of taxa identified compared to microhistology and macroscopic analysis[17][18]. For instance, Nichols et al. (2016) highlighted the taxonomic precision of metabarcoding on rumen contents, with on average 90% of DNA-sequences being identified to genus or species level in comparison to 75% of plant fragments recognised with macroscopy. Morevoer, another empirically tested advantage of metabarcoding compared to traditional time-consuming methods, involves higher cost efficiency[19]. Finally, with its fine resolution, DNA barcoding represents a crucial tool in wildlife management to identify the feeding habits of endangered species and animals that can cause feeding damages to the environment[20].
Challanges
With DNA barcoding it is impossible to retrieve information about sex or age of prey species, which can be crucial. This limitation can anyway be overcome with an additional step in the analysis by using microsatellite polimorphism and Y-chromosome amplification[21][22]. Moreover, DNA provides detailed information of the most recent events (e.g. 24–48 hr) but it is not able to provide a longer dietary prospect unless a continuous sampling is conducted[23]. Additionally, when using generic primers that amplify ‘barcode’ regions from a broad range of food species, the amplifiable host DNA may largely outnumber the presence of prey DNA, complicating prey detection. However, a strategy to prevent the host DNA amplification can be the addition of a predator-specific blocking primer[24][25] [26]. Indeed, blocking primers for suppressing amplification of predator DNA allows the amplification of the other vertebrate groups and produces amplicon mixes that are predominately food DNA[27][28].
Despite the improvement of diet assessment via DNA barcoding, secondary consumption (prey of the prey, parasites, etc.) still represents a confounding factor. In fact, some secondary prey may result in the analysis as primary prey items, introducing a bias. However, due to a much lower total biomass and to a higher level of degradation, DNA of secondary prey might represent only a minor part of sequences recovered compared to primary prey[29].
The quantitative interpretation of DNA barcoding results is not straightforward [30]. There have been attempts to use the number of sequences recovered to estimate the abundance of prey species in diet contents (e.g. gut, faeces). For example, if the wolf ate more moose than wild boar, there should be more moose DNA in their gut, and thus, more moose sequences are recovered. Despite the evidence for general correlations between the sequence number and the biomass, actual evaluations of this method have been unsuccessful[31] (Deagle et al. 2013; Pinol et al. 2014). This can be explained by the fact that tissues originally contain different densities of DNA and can be digested differently[32].
Examples
Mammals
Mammals diet is widely studied using DNA barcoding and metabarcoding. Some differences in the methodology can be observed depending on the feeding strategy of the target mammal species, i.e. whether it is herbivore, carnivore, or generalist.
For herbivore mammal species, DNA is usually extracted from faeces samples[33][34][35][36] or rumen contents collected from road kills or animals killed during regular hunting[37]. Within DNA barcoding, the trnL aprroach can be used to identify plant species by using a very short but informative fragment of chloroplast DNA (P6 loop of the chloroplast trnL (UAA) intron)[38]. Potentially, this application is applicable to all herbivorous species feeding on angiosperms and gymnosperms[38]. Alternatively to the trnL aprroach, the markers rbcL, ITS2, matK, trnH-psbA can be used to amplify plant species.
When studying small herbivores with a secretive life style, such as voles and lemmings, DNA barcoding of ingested plants can be a crucial tool giving an accurate picture of food utilization[39]. Additionally, the fine resolution in plant identification obtained with DNA barcoding allows researchers to understand change in diet composition over time and variability among individuals, as observed in the alpine chamois (Rupicapra rupicapra)[40]. Between October and November, by analyzing the faeces composition via DNA barcoding, the alpine chamois showed a shift in diet preferences. Also, different diet categories were observed amongst individuals within each month[41].
For carnivores, the use of non-invasive approaches is crucial especially when dealing with elusive and endangered species. Diet assessment through DNA barcoding of faeces can have a greater efficiency in prey species detection compared to traditional diet analysis, which mostly rely upon the morphological identification of undigested hard remains in the faeces[42]. Estimating the vertebrate diet diversity of the leopard cat (Prionailurus bengalensis) in Pakistan, Shehzad et al. (2012) identified a total of 18 prey taxa using DNA barcoding. Eight distinct bird taxa were reported, while previous studies based on conventional methods did not identify any bird species in the leopard cat diet[43]. Another example is the use of DNA barcoding to identify soft remains of prey in the stomach contents of grey seals (Halichoerus grypus) and harbour porpoises (Phocoena phocoena)[44].
wich has a direct managment implication due to their interactions with fisheries.
shark (Dunn 2010),
Omnivurous: broad diet, metabarcoding; bear (De Barba et al., 2014), red bat (Clare et al., 2009)
Fish
Birds
Arthropods
See also
- DNA barcoding of fish
- DNA barcoding of invertebrates
Reference
- ^ King, R. A.; Read, D. S.; Traugott, M.; Symondson, W. O. C. (2008-01-14). "INVITED REVIEW: Molecular analysis of predation: a review of best practice for DNA-based approaches: OPTIMIZING MOLECULAR ANALYSIS OF PREDATION". Molecular Ecology. 17 (4): 947–963. doi:10.1111/j.1365-294X.2007.03613.x.
- ^ Pompanon, Francois; Deagle, Bruce E.; Symondson, William O. C.; Brown, David S.; Jarman, Simon N.; Taberlet, Pierre (2012). "Who is eating what: diet assessment using next generation sequencing". Molecular Ecology. 21 (8): 1931–1950. doi:10.1111/j.1365-294X.2011.05403.x. ISSN 1365-294X.
- ^ Sheppard, S. K.; Harwood, J. D. (2005-10). "Advances in molecular ecology: tracking trophic links through predator-prey food-webs". Functional Ecology. 19 (5): 751–762. doi:10.1111/j.1365-2435.2005.01041.x. ISSN 0269-8463.
{{cite journal}}
: Check date values in:|date=
(help) - ^ Erickson, David L.; Uriarte, Maria; García-Robledo, Carlos; Kress, W. John (2015-01-01). "DNA barcodes for ecology, evolution, and conservation". Trends in Ecology & Evolution. 30 (1): 25–35. doi:10.1016/j.tree.2014.10.008. ISSN 0169-5347. PMID 25468359.
- ^ POMPANON, FRANCOIS; DEAGLE, BRUCE E.; SYMONDSON, WILLIAM O. C.; BROWN, DAVID S.; JARMAN, SIMON N.; TABERLET, PIERRE (2011-12-15). "Who is eating what: diet assessment using next generation sequencing". Molecular Ecology. 21 (8): 1931–1950. doi:10.1111/j.1365-294x.2011.05403.x. ISSN 0962-1083.
- ^ HARWOOD, JAMES D.; DESNEUX, NICOLAS; YOO, HO JUNG S.; ROWLEY, DANIEL L.; GREENSTONE, MATTHEW H.; OBRYCKI, JOHN J.; O′NEIL, ROBERT J. (2007-10). "Tracking the role of alternative prey in soybean aphid predation byOrius insidiosus: a molecular approach". Molecular Ecology. 16 (20): 4390–4400. doi:10.1111/j.1365-294x.2007.03482.x. ISSN 0962-1083.
{{cite journal}}
: Check date values in:|date=
(help) - ^ POMPANON, FRANCOIS; DEAGLE, BRUCE E.; SYMONDSON, WILLIAM O. C.; BROWN, DAVID S.; JARMAN, SIMON N.; TABERLET, PIERRE (2011-12-15). "Who is eating what: diet assessment using next generation sequencing". Molecular Ecology. 21 (8): 1931–1950. doi:10.1111/j.1365-294x.2011.05403.x. ISSN 0962-1083.
- ^ Kress, W. John; García-Robledo, Carlos; Uriarte, Maria; Erickson, David L. (2015-01). "DNA barcodes for ecology, evolution, and conservation". Trends in Ecology & Evolution. 30 (1): 25–35. doi:10.1016/j.tree.2014.10.008. ISSN 0169-5347.
{{cite journal}}
: Check date values in:|date=
(help) - ^ Kress, W. John; García-Robledo, Carlos; Uriarte, Maria; Erickson, David L. (2015-01). "DNA barcodes for ecology, evolution, and conservation". Trends in Ecology & Evolution. 30 (1): 25–35. doi:10.1016/j.tree.2014.10.008. ISSN 0169-5347.
{{cite journal}}
: Check date values in:|date=
(help) - ^ Tobe, Shanan S.; Kitchener, Andrew; Linacre, Adrian (2009-12). "Cytochrome b or cytochrome c oxidase subunit I for mammalian species identification—An answer to the debate". Forensic Science International: Genetics Supplement Series. 2 (1): 306–307. doi:10.1016/j.fsigss.2009.08.053. ISSN 1875-1768.
{{cite journal}}
: Check date values in:|date=
(help) - ^ Jakubavičiūtė, Eglė; Bergström, Ulf; Eklöf, Johan S.; Haenel, Quiterie; Bourlat, Sarah J. (2017-10-23). "DNA metabarcoding reveals diverse diet of the three-spined stickleback in a coastal ecosystem". PLOS ONE. 12 (10): e0186929. doi:10.1371/journal.pone.0186929. ISSN 1932-6203.
{{cite journal}}
: CS1 maint: unflagged free DOI (link) - ^ Garnick, Sarah; Barboza, Perry S.; Walker, John W. (2018-07). "Assessment of Animal-Based Methods Used for Estimating and Monitoring Rangeland Herbivore Diet Composition". Rangeland Ecology & Management. 71 (4): 449–457. doi:10.1016/j.rama.2018.03.003. ISSN 1550-7424.
{{cite journal}}
: Check date values in:|date=
(help) - ^ Santos, Teresa; Fonseca, Carlos; Barros, Tânia; Godinho, Raquel; Bastos-Silveira, Cristiane; Bandeira, Victor; Rocha, Rita Gomes (2015-05-20). "Using stomach contents for diet analysis of carnivores through DNA barcoding". Wildlife Biology in Practice. 11 (1). doi:10.2461/wbp.2015.11.4. ISSN 1646-2742.
- ^ Valentini, Alice; Pompanon, François; Taberlet, Pierre (2009-02). "DNA barcoding for ecologists". Trends in Ecology & Evolution. 24 (2): 110–117. doi:10.1016/j.tree.2008.09.011. ISSN 0169-5347.
{{cite journal}}
: Check date values in:|date=
(help) - ^ Piñol, J.; San Andrés, V.; Clare, E. L.; Mir, G.; Symondson, W. O. C. (2013-08-20). "A pragmatic approach to the analysis of diets of generalist predators: the use of next-generation sequencing with no blocking probes". Molecular Ecology Resources. 14 (1): 18–26. doi:10.1111/1755-0998.12156. ISSN 1755-098X.
- ^ Agustí, N.; Shayler, S. P.; Harwood, J. D.; Vaughan, I. P.; Sunderland, K. D.; Symondson, W. O. C. (2003). "Collembola as alternative prey sustaining spiders in arable ecosystems: prey detection within predators using molecular markers". Molecular Ecology. 12 (12): 3467–3475. doi:10.1046/j.1365-294X.2003.02014.x. ISSN 1365-294X.
- ^ Nichols, Ruth V.; Åkesson, Mikael; Kjellander, Petter (2016-06-20). "Diet Assessment Based on Rumen Contents: A Comparison between DNA Metabarcoding and Macroscopy". PLOS ONE. 11 (6): e0157977. doi:10.1371/journal.pone.0157977. ISSN 1932-6203.
{{cite journal}}
: CS1 maint: unflagged free DOI (link) - ^ Soininen, Eeva M; Valentini, Alice; Coissac, Eric; Miquel, Christian; Gielly, Ludovic; Brochmann, Christian; Brysting, Anne K; Sønstebø, Jørn H; Ims, Rolf A (2009). "Analysing diet of small herbivores: the efficiency of DNA barcoding coupled with high-throughput pyrosequencing for deciphering the composition of complex plant mixtures". Frontiers in Zoology. 6 (1): 16. doi:10.1186/1742-9994-6-16. ISSN 1742-9994.
{{cite journal}}
: CS1 maint: unflagged free DOI (link) - ^ Stein, Eric D.; Martinez, Maria C.; Stiles, Sara; Miller, Peter E.; Zakharov, Evgeny V. (2014-04-22). Casiraghi, Maurizio (ed.). "Is DNA Barcoding Actually Cheaper and Faster than Traditional Morphological Methods: Results from a Survey of Freshwater Bioassessment Efforts in the United States?". PLoS ONE. 9 (4): e95525. doi:10.1371/journal.pone.0095525. ISSN 1932-6203. PMC 3995707. PMID 24755838.
{{cite journal}}
: CS1 maint: PMC format (link) CS1 maint: unflagged free DOI (link) - ^ Ando, Haruko; Fujii, Chieko; Kawanabe, Masataka; Ao, Yoshimi; Inoue, Tomomi; Takenaka, Akio (2018-10-22). "Evaluation of plant contamination in metabarcoding diet analysis of a herbivore". Scientific Reports. 8 (1). doi:10.1038/s41598-018-32845-w. ISSN 2045-2322.
- ^ GRIFFITHS, R.; TIWARI, B. (1993-12). "Primers for the differential amplification of the sex-determining region Y gene in a range of mammal species". Molecular Ecology. 2 (6): 405–406. doi:10.1111/j.1365-294x.1993.tb00034.x. ISSN 0962-1083.
{{cite journal}}
: Check date values in:|date=
(help) - ^ TABERLET, PIERRE; LUIKART, GORDON (1999-09). "Non-invasive genetic sampling and individual identification". Biological Journal of the Linnean Society. 68 (1–2): 41–55. doi:10.1111/j.1095-8312.1999.tb01157.x. ISSN 0024-4066.
{{cite journal}}
: Check date values in:|date=
(help) - ^ Thomsen, Philip Francis; Kielgast, Jos; Iversen, Lars Lønsmann; Møller, Peter Rask; Rasmussen, Morten; Willerslev, Eske (2012-08-29). "Detection of a Diverse Marine Fish Fauna Using Environmental DNA from Seawater Samples". PLoS ONE. 7 (8): e41732. doi:10.1371/journal.pone.0041732. ISSN 1932-6203.
{{cite journal}}
: CS1 maint: unflagged free DOI (link) - ^ Vestheim, Hege; Jarman, Simon N (2008). "Blocking primers to enhance PCR amplification of rare sequences in mixed samples – a case study on prey DNA in Antarctic krill stomachs". Frontiers in Zoology. 5 (1): 12. doi:10.1186/1742-9994-5-12. ISSN 1742-9994.
{{cite journal}}
: CS1 maint: unflagged free DOI (link) - ^ SHEHZAD, WASIM; RIAZ, TIAYYBA; NAWAZ, MUHAMMAD A.; MIQUEL, CHRISTIAN; POILLOT, CAROLE; SHAH, SAFDAR A.; POMPANON, FRANÇOIS; COISSAC, ERIC; TABERLET, PIERRE (2012-01-17). "Carnivore diet analysis based on next-generation sequencing: application to the leopard cat (Prionailurus bengalensis) in Pakistan". Molecular Ecology. 21 (8): 1951–1965. doi:10.1111/j.1365-294x.2011.05424.x. ISSN 0962-1083.
- ^ Jarman, Simon N.; McInnes, Julie C.; Faux, Cassandra; Polanowski, Andrea M.; Marthick, James; Deagle, Bruce E.; Southwell, Colin; Emmerson, Louise (2013-12-16). "Adélie Penguin Population Diet Monitoring by Analysis of Food DNA in Scats". PLoS ONE. 8 (12): e82227. doi:10.1371/journal.pone.0082227. ISSN 1932-6203.
{{cite journal}}
: CS1 maint: unflagged free DOI (link) - ^ Vestheim, Hege; Jarman, Simon N (2008). "Blocking primers to enhance PCR amplification of rare sequences in mixed samples – a case study on prey DNA in Antarctic krill stomachs". Frontiers in Zoology. 5 (1): 12. doi:10.1186/1742-9994-5-12. ISSN 1742-9994. PMC 2517594. PMID 18638418.
{{cite journal}}
: CS1 maint: PMC format (link) CS1 maint: unflagged free DOI (link) - ^ Vestheim, Hege; Deagle, Bruce E.; Jarman, Simon N. (2010-09-29), "Application of Blocking Oligonucleotides to Improve Signal-to-Noise Ratio in a PCR", Methods in Molecular Biology, Humana Press, pp. 265–274, ISBN 9781607619437, retrieved 2019-03-29
- ^ Jakubavičiūtė, Eglė; Bergström, Ulf; Eklöf, Johan S.; Haenel, Quiterie; Bourlat, Sarah J. (2017-10-23). "DNA metabarcoding reveals diverse diet of the three-spined stickleback in a coastal ecosystem". PLOS ONE. 12 (10): e0186929. doi:10.1371/journal.pone.0186929. ISSN 1932-6203.
{{cite journal}}
: CS1 maint: unflagged free DOI (link) - ^ Valentini, Alice; Pompanon, François; Taberlet, Pierre (2009-02). "DNA barcoding for ecologists". Trends in Ecology & Evolution. 24 (2): 110–117. doi:10.1016/j.tree.2008.09.011. ISSN 0169-5347.
{{cite journal}}
: Check date values in:|date=
(help) - ^ POMPANON, FRANCOIS; DEAGLE, BRUCE E.; SYMONDSON, WILLIAM O. C.; BROWN, DAVID S.; JARMAN, SIMON N.; TABERLET, PIERRE (2011-12-15). "Who is eating what: diet assessment using next generation sequencing". Molecular Ecology. 21 (8): 1931–1950. doi:10.1111/j.1365-294x.2011.05403.x. ISSN 0962-1083.
- ^ Deagle, Bruce E.; Chiaradia, André; McInnes, Julie; Jarman, Simon N. (2010-06-17). "Pyrosequencing faecal DNA to determine diet of little penguins: is what goes in what comes out?". Conservation Genetics. 11 (5): 2039–2048. doi:10.1007/s10592-010-0096-6. ISSN 1566-0621.
- ^ Kowalczyk, Rafał; Taberlet, Pierre; Coissac, Eric; Valentini, Alice; Miquel, Christian; Kamiński, Tomasz; Wójcik, Jan M. (2011-2). "Influence of management practices on large herbivore diet—Case of European bison in Białowieża Primeval Forest (Poland)". Forest Ecology and Management. 261 (4): 821–828. doi:10.1016/j.foreco.2010.11.026.
{{cite journal}}
: Check date values in:|date=
(help) - ^ Soininen, Eeva M; Valentini, Alice; Coissac, Eric; Miquel, Christian; Gielly, Ludovic; Brochmann, Christian; Brysting, Anne K; Sønstebø, Jørn H; Ims, Rolf A (2009). "Analysing diet of small herbivores: the efficiency of DNA barcoding coupled with high-throughput pyrosequencing for deciphering the composition of complex plant mixtures". Frontiers in Zoology. 6 (1): 16. doi:10.1186/1742-9994-6-16. ISSN 1742-9994.
{{cite journal}}
: CS1 maint: unflagged free DOI (link) - ^ Ait Baamrane, Moulay Abdeljalil; Shehzad, Wasim; Ouhammou, Ahmed; Abbad, Abdelaziz; Naimi, Mohamed; Coissac, Eric; Taberlet, Pierre; Znari, Mohammed (2012-04-27). "Assessment of the Food Habits of the Moroccan Dorcas Gazelle in M'Sabih Talaa, West Central Morocco, Using the trnL Approach". PLoS ONE. 7 (4): e35643. doi:10.1371/journal.pone.0035643. ISSN 1932-6203.
{{cite journal}}
: CS1 maint: unflagged free DOI (link) - ^ Riaz, Tiayyba; Shehzad, Wasim; Viari, Alain; Pompanon, François; Taberlet, Pierre; Coissac, Eric (2011-09-19). "ecoPrimers: inference of new DNA barcode markers from whole genome sequence analysis". Nucleic Acids Research. 39 (21): e145 – e145. doi:10.1093/nar/gkr732. ISSN 1362-4962.
- ^ Nichols, Ruth V.; Åkesson, Mikael; Kjellander, Petter (2016-06-20). "Diet Assessment Based on Rumen Contents: A Comparison between DNA Metabarcoding and Macroscopy". PLOS ONE. 11 (6): e0157977. doi:10.1371/journal.pone.0157977. ISSN 1932-6203.
{{cite journal}}
: CS1 maint: unflagged free DOI (link) - ^ a b VALENTINI, ALICE; MIQUEL, CHRISTIAN; NAWAZ, MUHAMMAD ALI; BELLEMAIN, EVA; COISSAC, ERIC; POMPANON, FRANÇOIS; GIELLY, LUDOVIC; CRUAUD, CORINNE; NASCETTI, GIUSEPPE (2009-01). "New perspectives in diet analysis based on DNA barcoding and parallel pyrosequencing: thetrnL approach". Molecular Ecology Resources. 9 (1): 51–60. doi:10.1111/j.1755-0998.2008.02352.x. ISSN 1755-098X.
{{cite journal}}
: Check date values in:|date=
(help) - ^ Soininen, Eeva M; Valentini, Alice; Coissac, Eric; Miquel, Christian; Gielly, Ludovic; Brochmann, Christian; Brysting, Anne K; Sønstebø, Jørn H; Ims, Rolf A (2009). "Analysing diet of small herbivores: the efficiency of DNA barcoding coupled with high-throughput pyrosequencing for deciphering the composition of complex plant mixtures". Frontiers in Zoology. 6 (1): 16. doi:10.1186/1742-9994-6-16. ISSN 1742-9994.
{{cite journal}}
: CS1 maint: unflagged free DOI (link) - ^ Rayé, Gilles; Miquel, Christian; Coissac, Eric; Redjadj, Claire; Loison, Anne; Taberlet, Pierre (2010-11-23). "New insights on diet variability revealed by DNA barcoding and high-throughput pyrosequencing: chamois diet in autumn as a case study". Ecological Research. 26 (2): 265–276. doi:10.1007/s11284-010-0780-5. ISSN 0912-3814.
- ^ Rayé, Gilles; Miquel, Christian; Coissac, Eric; Redjadj, Claire; Loison, Anne; Taberlet, Pierre (2010-11-23). "New insights on diet variability revealed by DNA barcoding and high-throughput pyrosequencing: chamois diet in autumn as a case study". Ecological Research. 26 (2): 265–276. doi:10.1007/s11284-010-0780-5. ISSN 0912-3814.
- ^ SHEHZAD, WASIM; RIAZ, TIAYYBA; NAWAZ, MUHAMMAD A.; MIQUEL, CHRISTIAN; POILLOT, CAROLE; SHAH, SAFDAR A.; POMPANON, FRANÇOIS; COISSAC, ERIC; TABERLET, PIERRE (2012-01-17). "Carnivore diet analysis based on next-generation sequencing: application to the leopard cat (Prionailurus bengalensis) in Pakistan". Molecular Ecology. 21 (8): 1951–1965. doi:10.1111/j.1365-294x.2011.05424.x. ISSN 0962-1083.
- ^ SHEHZAD, WASIM; RIAZ, TIAYYBA; NAWAZ, MUHAMMAD A.; MIQUEL, CHRISTIAN; POILLOT, CAROLE; SHAH, SAFDAR A.; POMPANON, FRANÇOIS; COISSAC, ERIC; TABERLET, PIERRE (2012-01-17). "Carnivore diet analysis based on next-generation sequencing: application to the leopard cat (Prionailurus bengalensis) in Pakistan". Molecular Ecology. 21 (8): 1951–1965. doi:10.1111/j.1365-294x.2011.05424.x. ISSN 0962-1083.
- ^ Méheust, Eléonore; Alfonsi, Eric; Le Ménec, Patrick; Hassani, Sami; Jung, Jean-Luc (2014-11-19). "DNA barcoding for the identification of soft remains of prey in the stomach contents of grey seals (Halichoerus grypus) and harbour porpoises (Phocoena phocoena)". Marine Biology Research. 11 (4): 385–395. doi:10.1080/17451000.2014.943240. ISSN 1745-1000.