Jump to content

User:Cecilia.di.bernardi/sandbox

From Wikipedia, the free encyclopedia
This is an old revision of this page, as edited by Cecilia.di.bernardi (talk | contribs) at 21:26, 28 March 2019. The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

DNA barcoding in diet assessment

DNA barcoding is broadly used to analyse the diet of both invertebrate and vertebrate organisms[1][2] and further detect and characterize their trophic interactions[3][4]. This approach is based on the identification of consumed species by characterization of DNA present in dietary samples[5], such as individual food remains, regurgitates, gut and fecal samples, or the homogenized body of the host organism, as it can occur for example with insects[6].

Mammal diet assessment

General intro sentence on use of DNA barcoding in mammals diet assessment

Methods

Describe methods and highlight main approaches depending on previous knowledge on diet: use of specific or generic markers. Also metabarcoding.

Technical details: target regions for mammals (DNA barcodes, cytb); blocking primers of the host (Shehzad et al., 2012; Vestheim & Jarman, 2008; King et al., 2008; Shehzad et al., 2012)

Case studies

bear (De Barba et al., 2014)

leopard cat (Shehzad et al., 2012)

chamois (Rayé et al., 2011)

macaroni penguin (Deagle et al., 2007)

seal (Casper et al., 2007; Meheust et al., 2015)

red bat (Clare et al., 2009)

Comparison with traditional diet assessment approaches

Casper et al., 2007a-b; Mumma et al., 2015; Shores et al., 2015; Nielsen et al., 2018 review

Shortcomings and potentials

Considerable areas of difficulty are represented by

Bird diet assessment

Arthropod diet assessment


  1. ^ King, R. A.; Read, D. S.; Traugott, M.; Symondson, W. O. C. (2008-01-14). "INVITED REVIEW: Molecular analysis of predation: a review of best practice for DNA-based approaches: OPTIMIZING MOLECULAR ANALYSIS OF PREDATION". Molecular Ecology. 17 (4): 947–963. doi:10.1111/j.1365-294X.2007.03613.x.
  2. ^ Pompanon, Francois; Deagle, Bruce E.; Symondson, William O. C.; Brown, David S.; Jarman, Simon N.; Taberlet, Pierre (2012). "Who is eating what: diet assessment using next generation sequencing". Molecular Ecology. 21 (8): 1931–1950. doi:10.1111/j.1365-294X.2011.05403.x. ISSN 1365-294X.
  3. ^ Sheppard, S. K.; Harwood, J. D. (2005-10). "Advances in molecular ecology: tracking trophic links through predator-prey food-webs". Functional Ecology. 19 (5): 751–762. doi:10.1111/j.1365-2435.2005.01041.x. ISSN 0269-8463. {{cite journal}}: Check date values in: |date= (help)
  4. ^ Erickson, David L.; Uriarte, Maria; García-Robledo, Carlos; Kress, W. John (2015-01-01). "DNA barcodes for ecology, evolution, and conservation". Trends in Ecology & Evolution. 30 (1): 25–35. doi:10.1016/j.tree.2014.10.008. ISSN 0169-5347. PMID 25468359.
  5. ^ POMPANON, FRANCOIS; DEAGLE, BRUCE E.; SYMONDSON, WILLIAM O. C.; BROWN, DAVID S.; JARMAN, SIMON N.; TABERLET, PIERRE (2011-12-15). "Who is eating what: diet assessment using next generation sequencing". Molecular Ecology. 21 (8): 1931–1950. doi:10.1111/j.1365-294x.2011.05403.x. ISSN 0962-1083.
  6. ^ HARWOOD, JAMES D.; DESNEUX, NICOLAS; YOO, HO JUNG S.; ROWLEY, DANIEL L.; GREENSTONE, MATTHEW H.; OBRYCKI, JOHN J.; O′NEIL, ROBERT J. (2007-10). "Tracking the role of alternative prey in soybean aphid predation byOrius insidiosus: a molecular approach". Molecular Ecology. 16 (20): 4390–4400. doi:10.1111/j.1365-294x.2007.03482.x. ISSN 0962-1083. {{cite journal}}: Check date values in: |date= (help)