Suppose F : Rn → Rm is a function. Such a function is given by m real-valued component functions, y1(x1,...,xn), ..., ym(x1,...,xn). The partial derivatives of all these functions (if they exist) can be organized in an m-by-n matrix, the Jacobian matrix JF of F, as follows:
Example
The Jacobian matrix of the function with components: