Jump to content

Numerical certification

From Wikipedia, the free encyclopedia
This is an old revision of this page, as edited by MichaelBurr (talk | contribs) at 17:07, 1 March 2019 (Interval Newton). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.


Numerical certification is the process of verifying the correctness of a candidate solution to a system of equations. In (numerical) computational mathematics, such as numerical algebraic geometry, candidate solutions are computed algorithmically, but there is the possibility that errors have corrupted the candidates. For instance, in addition to the inexactness of input data and candidate solutions, numerical errors or errors in the discretization of the problem may result in corrupted candidate solutions. The goal of numerical certification is to provide a certificate which proves which of these candidates are, indeed, approximate solutions.

Methods for certification can be divided into two flavors: a priori certification and a posteriori certification. A posteriori certification confirms the correctness of the final answers (regardless of how they are generated), while a priori certification confirms the correctness of each step of a specific computation. A typical example of a posteriori certification is Smale's alpha theory, while a typical example of a priori certification is interval arithmetic.

Certificates

A certificate is a computational proof of the correctness of a candidate solution. For instance, a certificate may consist of an approximate solution , a region containing , and a proof that contains exactly one solution to the system of equations.

In this context, an a priori numerical certificate is a certificate in the sense of correctness in computer science. On the other hand, an a posteriori numerical certificate operates only on solutions, regardless of how they are computed. Hence, a posteriori certification is different from algorithmic correctness -- for an extreme example, an algorithm could randomly generate candidates and attempt to certify them as approximate roots using a posteriori certification.

A posteriori certification methods

There are a variety of methods for a posteriori certification, including

Alpha theory

The cornerstone of Smale's alpha theory is bounding the error for Newton's method. Smale's 1986 work[1] introduced the quantity , which quantifies the convergence of Newton's method. More precisely, let be a system of analytic functions in the variables , the derivative operator, and the Newton operator. The quantities and are used to certify a candidate solution. In particular, if then is an approximate solution for , i.e., the candidate is in the domain of quadratic convergence for Newton's method. In other words, if this inequality holds, then there is a root of so that iterates of the Newton operator converge as

The software package alphaCertified provides an implementation of the alpha test for polynomials by estimating and .[2]

The Interval Newton and Krawczyck Methods

Suppose is a function whose fixed points correspond to the roots of . For example, the Newton operator has this property. Suppose that is a region, then,

  1. If maps into itself, i.e., , then by Brouwer fixed-point theorem, has at least one fixed point in , and, hence has at least one root in .
  2. If is contractive in a region containing , then there is at most one root in .

For instance, we observe that if is a compact and convex region and , then, for any , there exist such that




These properties can often be established using interval arithmetic. For example, the interval Newton operator replaces


with the region containing . For example, the interval Newton operator is where is a point (often the center of mass) of and is an interval over-approximation to the set inverses of derivatives for . Then, one can show that if is a fixed point of


Interval Newton [citation needed], Krawczyk [citation needed], and related methods use such functions to establish the existence and uniqueness of roots within a region using topological methods:

The basic form of Newton's method replaces the input in the iterator with an interval approximation. In other words

is contained within , where is the midpoint of and is an over-approximation to the set-image of the Jacobian of on .

Miranda test

  • Alpha theory (Smale)
  • Krawczyk's method/Interval Newton (Moore)
  • Miranda Test (Yap, Vegter, Sharma)

A priori certification methods

  • Interval arithmetic (Moore, Arb, Mezzarobba)
  • Condition numbers (Beltran-Leykin)

Interval arithmetic

Interval arithmetic can be used to provide an a priori numerical certificate by computing intervals containing unique solutions. By using intervals instead of plain numeric types during path tracking, resulting candidates are represented by intervals. The candidate solution-interval is itself the certificate, in the sense that the solution is guaranteed to be inside the interval.

Condition numbers

Numerical algebraic geometry solves polynomial systems using homotopy continuation and path tracking methods. By monitoring the condition number for a tracked homotopy at every step, and ensuring that no two solution paths ever intersect, one can compute a numerical certificate along with a solution. This scheme is called a priori path tracking.[3]

Non-certified numerical path tracking relies on heuristic methods for controlling time step size and precision.[4] In contrast, a priori certified path tracking goes beyond heuristics to provide step size control that guarantees that for every step along the path, the current point is within the domain of quadratic convergence for the current path.

See also

Category:Algebraic geometry Category:Nonlinear algebra

  1. ^ Smale, Steve (1986). "Newton's method estimates from data at one point". The merging of disciplines: new directions in pure, applied, and computational mathematics: 185–196.
  2. ^ Hauenstein, Jonathan; Sottile, Frank (2012). "Algorithm 921: alphaCertified: certifying solutions to polynomial systems". ACM Transactions on Mathematical Software (TOMS). 38 (4): 28. doi:10.1145/2331130.2331136.
  3. ^ Beltran, Carlos; Leykin, Anton (2012). "Certified numerical homotopy tracking". Experimental Mathematics. 21 (1): 69–83.
  4. ^ Bates, Daniel; Hauenstein, Jonathan; Sommese, Andrew; Wampler, Charles (2009). "Stepsize control for path tracking". Contemporary Mathematics. 496 (21).