Operator monotone function
Appearance
The operator monotone function is an important type of real-valued function, first described by Charles Löwner in 1934.[1] It is closely allied to the operator concave and operator concave functions, and is encountered in operator theory and in matrix theory,[2] and led to the Löwner–Heinz inequality.[3]
References
- ^ Template:Cite article
- ^ Chansangiam, Pattrawut (2013). "Operator Monotone Functions: Characterizations and Integral Representations". arXiv:1305.2471 [math.FA].
- ^ "Löwner–Heinz inequality". Encyclopedia of Mathematics.
Further reading
- Schilling, R.; Song, R.; Vondraček, Z. (2010). "Bernstein functions. Theory and Applications". Studies in Mathematics. 37. de Gruyter, Berlin. doi:10.1515/9783110215311. ISBN 9783110215311.
{{cite journal}}
: Cite journal requires|journal=
(help) - Hansen, Frank (2013). "The fast track to Löwner's theorem". Linear Algebra and its Applications. 438 (11): 4557. arXiv:1112.0098. doi:10.1016/j.laa.2013.01.022.
- Chansangiam, Pattrawut (2015). "A Survey on Operator Monotonicity, Operator Convexity, and Operator Means". International Journal of Analysis. 2015: 1. doi:10.1155/2015/649839.
{{cite journal}}
: CS1 maint: unflagged free DOI (link)