Template:Other uses2
The cross-correlation matrix of two random vectors is a matrix containing as elements the cross-correlations of all pairs of elements of the random vectors. The cross-correlation matrixis used in various digital signal processing algorithms.
Definition
For two random vectors
and
, each containing random elements whose expected value and variance exist, the cross-correlation matrix of
and
is defined by
and has dimensions
. Written component-wise:
![{\displaystyle \operatorname {R} _{\mathbf {X} \mathbf {Y} }={\begin{bmatrix}\operatorname {E} [X_{1}Y_{1}]&\operatorname {E} [X_{1}Y_{2}]&\cdots &\operatorname {E} [X_{1}Y_{n}]\\\\\operatorname {E} [X_{2}Y_{1}]&\operatorname {E} [X_{2}Y_{2}]&\cdots &\operatorname {E} [X_{2}Y_{n}]\\\\\vdots &\vdots &\ddots &\vdots \\\\\operatorname {E} [X_{m}Y_{1}]&\operatorname {E} [X_{m}Y_{2}]&\cdots &\operatorname {E} [X_{m}Y_{n}]\\\\\end{bmatrix}}}](/media/api/rest_v1/media/math/render/svg/dfaf0f3923eafd144f762732bbaa951102ed00bb)
The random vectors
and
need not have the same dimension, and either might be a scalar value.
Example
For example, if
and
are random vectors, then
is a
matrix whose
-th entry is
.
cross-correlation matrix of complex random vectors
If
and
are complex random vectors, each containing random variables whose expected value and variance exist, the cross-correlation matrix of
and
is defined by
![{\displaystyle \operatorname {R} _{\mathbf {Z} \mathbf {W} }{\stackrel {\mathrm {def} }{=}}\ \operatorname {E} [\mathbf {Z} \mathbf {W} ^{\rm {H}}]}](/media/api/rest_v1/media/math/render/svg/734aedc70ed628f7ff1693990d3e2bb5f1bfe149)
where
denotes Hermitian transposition.
Two random vectors
and
are called uncorrelated if
.
They are uncorrelated if and only if their covariance
matrix is zero.
In the case of two complex random vectors
and
they are called uncorrelated if
![{\displaystyle \operatorname {E} [\mathbf {Z} \mathbf {W} ^{\rm {H}}]=\operatorname {E} [\mathbf {Z} ]\operatorname {E} [\mathbf {W} ]^{\rm {H}}}](/media/api/rest_v1/media/math/render/svg/e653a5949cb26600c65a6d23c16310eae1e9867f)
and
.
Properties
- The cross-covariance matrix is related to the cross-correlation matrix as follows:
![{\displaystyle \operatorname {K} _{\mathbf {X} \mathbf {Y} }=\operatorname {E} [(\mathbf {X} -\operatorname {E} [\mathbf {X} ])(\mathbf {Y} -\operatorname {E} [\mathbf {Y} ])^{\rm {T}}]=\operatorname {R} _{\mathbf {X} \mathbf {Y} }-\operatorname {E} [\mathbf {X} ]\operatorname {E} [\mathbf {Y} ]^{\rm {T}}}](/media/api/rest_v1/media/math/render/svg/1d58fc3b03892e013a545da3322c2d4942d7314e)
- Respectively for complex random vectors:
![{\displaystyle \operatorname {K} _{\mathbf {Z} \mathbf {W} }=\operatorname {E} [(\mathbf {Z} -\operatorname {E} [\mathbf {Z} ])(\mathbf {W} -\operatorname {E} [\mathbf {W} ])^{\rm {H}}]=\operatorname {R} _{\mathbf {Z} \mathbf {W} }-\operatorname {E} [\mathbf {Z} ]\operatorname {E} [\mathbf {W} ]^{\rm {H}}}](/media/api/rest_v1/media/math/render/svg/e3b852cac5898146e76309d2f9d00ac163d1d65a)
References
- Hayes, Monson H., Statistical Digital Signal Processing and Modeling, John Wiley & Sons, Inc., 1996. ISBN 0-471-59431-8.
- Solomon W. Golomb, and Guang Gong. Signal design for good correlation: for wireless communication, cryptography, and radar. Cambridge University Press, 2005.
- M. Soltanalian. Signal Design for Active Sensing and Communications. Uppsala Dissertations from the Faculty of Science and Technology (printed by Elanders Sverige AB), 2014.
See also