Jump to content

Design methods

From Wikipedia, the free encyclopedia
This is an old revision of this page, as edited by Nigel Cross (talk | contribs) at 17:47, 18 December 2018 (Emergence of design research and design studies: Re-wrote this section: more neutral and encyclopaedic.). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Design methods are procedures, techniques, aids, or tools for designing. They offer a number of different kinds of activities that a designer might use within an overall design process. Conventional procedures of design, such as drawing, can be regarded as design methods, but since the 1950s new procedures have been developed that are more usually grouped together under the name of "design methods". What design methods have in common is that they "are attempts to make public the hitherto private thinking of designers; to externalise the design process".[1]

Design methodology is the broader study of method in design: the study of the principles, practices and procedures of designing.[2]

Background

Design methods originated in new approaches to problem solving developed in the mid-20th Century, and also in response to industrialisation and mass-production, which changed the nature of designing.[3] A "Conference on Systematic and Intuitive Methods in Engineering, Industrial Design, Architecture and Communications", held in London in 1962[4] is regarded as a key event marking the beginning of what became known within design studies as the "design methods movement", influencing design education and practice. Leading figures in this movement in the UK were J. Christopher Jones at the University of Manchester and L. Bruce Archer at the Royal College of Art.

The movement developed through further conferences on new design methods in the UK and USA in the 1960s.[5][6][7] The first books on rational design methods,[8][9][10] and on creative methods[11][12] also appeared in this period.

New approaches to design were developing at the same time in Germany, notably at the Ulm School of Design (Hochschule für Gestaltung–HfG Ulm) (1953–1968) under the leadership of Tomás Maldonado. Design teaching at Ulm integrated design with science (including social sciences) and introduced new fields of study such as cybernetics, systems theory and semiotics into design education.[13] Bruce Archer also taught at Ulm, and another influential teacher was Horst Rittel.[14] In 1963 Rittel moved to the School of Architecture at the University of California, Berkeley, where he helped found the Design Methods Group, a society focused on developing and promoting new methods especially in architecture and planning.

At the end of the 1960s two influential, but quite different works were published: Herbert A. Simon's The Sciences of the Artificial and J. Christopher Jones's Design Methods.[15][16] Simon proposed the "science of design" as "a body of intellectually tough, analytic, partly formalizable, partly empirical, teachable doctrine about the design process", whereas Jones catalogued a variety of approaches to design, both rational and creative, within a context of a broad, futures creating, systems view of design.

The 1970s saw some reaction against the rationality of design methods, notably from two of its pioneers, Christopher Alexander and J. Christopher Jones.[17] Fundamental issues were also raised by Rittel, who characterised design and planning problems as wicked problems, un-amenable to the techniques of science and engineering, which deal with "tame" problems.[18] The criticisms turned some in the movement away from rationalised approaches to design problem solving and towards "argumentative", participatory processes in which designers worked in partnership with the problem stakeholders (clients, customers, users, the community). This led to participatory design, user centered design and the role of design thinking as a creative process in problem solving and innovation.

However, interest in systematic and rational design methods continued to develop strongly in engineering design during the 1980s; for example, through the Conference on Engineering Design series of The Design Society and the work of the Verein Deutscher Ingenieure association in Germany, and also in Japan, where the Japanese Society for the Science of Design had been established as early as 1954.[19] Books on systematic engineering design methods were published in Germany and the UK.[20][21][22][23] In the USA the American Society of Mechanical Engineers Design Engineering Division began a stream on design theory and methodology within its annual conferences. The interest in systematic, rational approaches to design has led to design science and design science (methodology) in engineering and computer science.

Emergence of design research and design studies

The design methods movement had a profound influence on the development of academic interest in design and designing and the emergence of design research and design studies.[24] Arising directly from the 1962 Conference on Design Methods, the Design Research Society (DRS) was founded in the UK in 1966. The purpose of the Society is to promote "the study of and research into the process of designing in all its many fields" and is an interdisciplinary group with many professions represented.

In the USA, a similar Design Methods Group (DMG) was also established in 1966 by Horst Rittel and others at the University of California, Berkeley. The DMG held a conference at MIT in 1968[25] with a focus on environmental design and planning, and that led to the foundation of the Environmental Design Research Association (EDRA), which held its first conference in 1969.

In Germany, Vladimir Hubka established the Workshop Design-Konstruction (WDK),which led to a series of International Conferences on Engineering Design (ICED) beginning in 1981 and later became the Design Society.

In 1984 the USA National Science Foundation created a Design Theory and Methodology Program to promote this kind of process research in engineering design.

Academic research journals in design also began publication. DRS initiated Design Studies[26] in 1979, Design Issues[27] appeared in 1984, and Research in Engineering Design[28] in 1989.

Professional design practice

Conversations about design methods and a more systematic approach to design was not isolated to Europe. America was also a magnet for practicing design professionals to codify their successes in design practice and backing into larger theories about the dynamics of design methods.

American designers were much more pragmatic at articulating design methods and creating an underlying language about the practice of industrial and graphic design. They were tied to economic systems that supported design practice and therefore focused on the way design could be managed as an extension of business, rather than the European approach to design methods based on transforming engineering by design.

Industrial design was the first area that made inroads into systematizing knowledge through practice. Raymond Loewy was instrumental at elevating the visibility of industrial design through cult of personality (appearing three times on front cover of Time Magazine). Henry Dreyfuss had a profound impact on the practice of industrial design by developing a systematic process used to shape environments, transportation, products and packaging. His focus on the needs of the average consumer was most celebrated in his book Designing for People, an extensive exploration of ergonomics.

Jay Doblin one of America's foremost industrial designers, worked for Raymond Loewy and was later an employee of Unimark International, the world's largest global design firm during the 1960s with offices in seven countries. In 1972, Doblin formed Chicago-based Jay Doblin & Associates, a firm which managed innovative programs for Xerox Corporation and General Electric.[29] Doblin was prolific at developing a language to describe design. One of his best articles was "A Short, Grandiose Theory of Design", published in the 1987 Society of Typographic Arts Design Journal. In seven pages, Doblin presents a straightforward and persuasive argument for design as a systematic process. He described the emerging landscape of systematic design:

  • For large complex projects, it "would be irresponsible to attempt them without analytical methods" and rallied against an "adolescent reliance on overly intuitive practices."
  • He separated "direct design" in which a craftsperson works on the artifact to "indirect design" in which a design first creates a representation of the artifact, separating design from production in more complex situations.

Doblin and others were responding to the increased specialization of design and the complexity of managing large design programs for corporations. It was a natural process to begin to discuss how design should move upstream to be involved with the specifications of problems, not only in the traditional mode of production which design had been practiced. Particularly since 2000, design methods and its intersection with business development have been visibly championed by numerous consultancies within design industry.

The continuity of approaches to design projects by such representative firms is the generation of inputs incited by the human condition in varied contexts. These approaches utilize a sustainable methods-based mode of making that takes into account critical analytic and synthetic skills toward more informed and inspired specifications grounded in:

  • Direct investigation of human circumstances to draw out impressions
  • Engagement by client-side and end-user participants in design process
  • Open articulation by practitioners of multiple disciplines facilitated by design

Current state of design methods

There is no one way to practice design methods. John Chris Jones recognized this by stating:

Methodology should not be a fixed track to a fixed destination, but a conversation about everything that could be made to happen. The language of the conversation must bridge the logical gap between past and future, but in doing so it should not limit the variety of possible futures that are discussed nor should it force the choice of a future that is unfree.[1]

The focus of most post-1962 enhancements to design methods has been on developing a series of relevant, sound, humanistic problem-solving procedures and techniques to reduce avoidable errors and oversights that can adversely affect design solutions. The key benefit is to find a method that suits a particular design situation.

The benefits of their original work has been abstracted many times over; but in today's design environment, several of their main ideas have been integrated into contemporary design methods:

  • Emphasis on the user
  • Use of basic research methods to validate convictions with fact
  • Use of brainstorming and other related means to break mental patterns and precedent
  • Increased collaborative nature of design with other disciplines

A large challenge for design as a discipline, its use of methods and an endeavor to create shared values, is its inherent synthetic nature as an area of study and action. This allows design to be extremely malleable in nature, borrowing ideas and concepts from a wide variety of professions to suit the ends of individual practitioners. It also makes design vulnerable since these very activities make design a discipline unextensible as a shared body of knowledge.[30]

In 1983, Donald Schon at the Massachusetts Institute of Technology, published The Reflective Practitioner.[31] He saw traditional professions with stable knowledge bases, such as law and medicine, becoming unstable due to outdated notions of "technical rationality" as the grounding of professional knowledge. Practitioners were able to describe how they "think on their feet", and how they make use of a standard set of frameworks and techniques. Schon foresaw the increasing instability of traditional knowledge and how to achieve it. This is in line with the original founders of design methods who wanted to break with an unimaginative and static technical society and unify exploration, collaboration and intuition.

Design methods has influenced design practice and design education. It has benefited the design community by helping to create introductions that would never have happened if traditional professions remained stable, which did not necessarily allow collaboration due to gate keeping of areas of knowledge and expertise. Design has been by nature an interloper activity, with individuals that have crossed disciplines to question and innovate.

The challenge is to transform individual experiences, frameworks and perspectives into a shared, understandable, and, most importantly, a transmittable area of knowledge. Victor Margolin [citation needed] states three reasons why this will prove difficult:

  • Domain knowledge is a mixture of vocation (discipline) and avocation (interest) creating hybrid definitions that degrade shared knowledge
  • Intellectual capital of design and wider scholarly pluralism has diluted focus and shared language which has led to ungovernable laissez-faire values
  • Individual explorations of design discourse focuses too much on individual narratives leading to personal point of view rather than a critical mass of shared values

In the end, design methods is a term that is widely used. Though conducive to interpretations, it is a shared belief in an exploratory and rigorous method to solve problems through design, an act which is part and parcel of what designers aim to accomplish in today's complex world.

See also

References

  1. ^ a b Jones, J. Christopher (1980). Design Methods. UK: Wiley.
  2. ^ Cross, Nigel (1984). Developments in Design Methodology. UK: Wiley. ISBN 0471102482.
  3. ^ Cross, N. (1993) "A History Of Design Methodology", in de Vries, J., N. Cross and D. P. Grant (eds.), Design Methodology and Relationships with Science, Kluwer Press, The Netherlands. 15–27.
  4. ^ Jones, J. C. and D. G. Thornley, (eds) (1963) Conference on Design Methods, Pergamon Press, UK.
  5. ^ Gregory, S. A. (ed.) The Design Method. Butterworth, UK.
  6. ^ Broadbent, G. and A. Ward (eds) (1969) Design Methods in Architecture, Lund Humphries, UK
  7. ^ Moore, G. T. (ed.) (1970) Emerging Methods in Environmental Design and Planning, MIT Press, USA.
  8. ^ Asimow, M. (1962) Introduction to Design, Prentice-Hall, USA.
  9. ^ Alexander, C. (1964) Notes on the Synthesis of Form, Harvard University Press, USA.
  10. ^ Archer, L. B. (1965) Systematic Method for Designers, The Design Council, UK
  11. ^ Gordon, W. J. (1961) Synectics, Harper & Row, USA.
  12. ^ Osborn, A. F. (1963) Applied Imagination: Principles and Procedures of Creative Thinking, Scribener's Sons, USA.
  13. ^ Krampen, M. and G. Hörman (2003) The Ulm School of Design, Ernst & Sohn, Germany. p.85
  14. ^ Rith, C and Dubberly, H, "Why Horst W J Rittel Matters", Design Issues, 23, 72–91
  15. ^ Simon, H. A. (1969) The Sciences of the Artificial, MIT Press, USA.
  16. ^ Jones, J. C. (1970) Design Methods: Seeds of Human Futures, Wiley, UK
  17. ^ Cross, N. (1984) Developments in Design Methodology, Wiley, UK.
  18. ^ Rittel, H. and M. Webber (1973) "Dilemmas in a General Theory of Planning", Policy Sciences 4, 155–169
  19. ^ https://iasdr.net/member-societies/
  20. ^ Hubka, V. (1982) Principles of Engineering Design, Butterworth Scientific Press, UK.
  21. ^ Pahl, G. and W. Beitz (1984) Engineering Design: a systematic approach, Springer/Design Council, UK.
  22. ^ Hubka, V., Andreasen, M. M. and Eder, W. E. (1988) Practical Studies in Systematic Design, Butterworth, UK
  23. ^ Cross, N. (1989) Engineering Design Methods, Wiley, UK.
  24. ^ Bayazit, N. (2004) "Investigating Design: A Review of Forty Years of Design Research." Design Issues 20, 1, 16-29.
  25. ^ Moore, G. T. (ed.) (1970) Emerging Methods in Environmental Design and Planning. MIT Press, USA.
  26. ^ https://www.journals.elsevier.com/design-studies
  27. ^ https://www.mitpressjournals.org/loi/desi
  28. ^ https://link.springer.com/journal/163
  29. ^ AIGA Overview of Jay Doblin Archived 2005-11-03 at the Wayback Machine
  30. ^ John Chris Jones perspective about "Design Methods for Everyone"
  31. ^ Schon, Donald A. The Reflective Practitioner: How Professionals Think in Action. New York: Basic Books, 1983. ISBN 0-465-06878-2.

Books

  • Alexander, Christopher. A Pattern Language: Towns, Buildings, Construction. Oxford University Press, 1977. ISBN 0-19-501919-9
  • Cross, Nigel. Engineering Design Methods: Strategies for Product Design. John Wiley & Sons, 2000. ISBN 0-471-87250-4
  • Jones, John Christopher. Designing Designing. London: Architecture Design and Technology Press, 1991.
  • Jones, John Christopher. Design Methods. Wiley, 1992. ISBN 0-471-28496-3.
  • Margolin, Victor. The Politics of the Artificial: Essays on Design and Design Studies. University of Chicago Press, 2002. ISBN 0-226-50504-9
  • Protzen, Jean-Pierre and David J Harris. The Universe of Design: Horst Rittel's Theories of Design and Planning. Routledge, 2010. ISBN 0415779898
  • Schön, Donald. The Reflective Practitioner: How Professionals Think in Action. Basic Books, 1983. ISBN 0-465-06878-2