Jump to content

Redheffer matrix

From Wikipedia, the free encyclopedia
This is an old revision of this page, as edited by Maxieds (talk | contribs) at 18:23, 12 December 2018 (Substantially updated and expanded from the stub that just had an example of these matrices ... in actuality much more is known about their properties and quirks :)). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

In mathematics, a Redheffer matrix, often denoted as studied by Redheffer (1977), is a square (0,1) matrix whose entries aij are 1 if i divides j or if j = 1; otherwise, aij = 0. It is useful in some contexts to express Dirichlet convolution, or convolved divisors sums, in terms of matrix products involving the transpose of the Redheffer matrix.

Variants and definitions of component matrices

Since the invertibility of the Redheffer matrices are complicated by the initial column of ones in the matrix, it is often convenient to express where is defined to be the (0,1) matrix whose entries are one if and only if and . The remaining one-valued entries in then correspond to the divisibility condition reflected by the matrix , which plainly can be seen by an application of Mobius inversion is always invertible with inverse . We then have a characterization of the singularity of expressed by

If we define the function

then we can define the Redheffer (transpose) matrix to be the nxn square matrix in usual matrix notation. We will continue to make use this notation throughout the next sections.

Examples

The matrix below is the 12 × 12 Redheffer matrix. In the split sum-of-matrices notation for , the entries below corresponding to the initial column of ones in are marked in blue.

A corresponding application of the Mobius inversion formula shows that the Redheffer transpose matrix is always invertible, with inverse entries given by

where denotes the Moebius function. In this case, we have that the inverse Redheffer transpose matrix is given by

Key properties

Singularity and relations to the Mertens function

The determinant of the nxn square Redheffer matrix is given by the Mertens function M(n). In particular, the matrix is not invertible precisely when the Mertens function is zero (or is close to changing signs). This results in an interesting characterization that the Mertens function can only change signs infinitely often if the Redheffer matrix is singular at infinitely many natural numbers, which is widely believed to be the case with respect to the oscillatory behavior of . The determinants of the Redheffer matrices are immediately tied to the Riemann Hypothesis (RH) through this intimate relation with the Mertens function as the RH is equivalent to showing that for all (sufficiently small) .

Spectral radius and eigenspaces

  • If we denote the spectral radius of by , i.e., the dominant maximum modulus eigenvalue in the spectrum of , then

which bounds the asymptotic behavior of the spectrum of when n is large. It can also be shown that , and by a careful analysis (see the characteristic polynomial expansions below) that .

  • The matrix has eigenvalue one with multiplicity .
  • The dimension of the eigenspace corresponding to the eigenvalue is known to be . In particular, this implies that is not diagonalizable whenever .
  • For all other eigenvalues of , then dimension of the corresponding eigenspaces are one.

Characterizing eigenvectors

We have that is an eigenvector of corresponding to some eigenvalue in the spectrum of if and only if for the following two conditions hold:

If we restrict ourselves to the so-called non-trivial cases where , then given any initial eigenvector component we can recursively compute the remaining n-1 components according to the formula

With this in mind, for we can define the sequences of

There are a couple of curious implications related to the definitions of these sequences. First, we have that if and only if

Secondly, we have an established formula for the Dirichlet series, or Dirichlet generating function, over these sequences for fixed which holds for all given by

where of course as usual denotes the Riemann zeta function.

Bounds and properties of non-trivial eigenvalues

A graph theoretic intepretation to evaluating the zeros of the characteristic polynomial of and bounding its coefficients is given in Section 5.1 of [1]. Estimates of the sizes of the Jordan blocks of corresponding to the eigenvalue one are given in [2]. A brief overview of the properties of a modified approach to factorizing the characteristic polynomial, , of these matrices is defined here without the full scope of the somewhat technical proofs justifying the bounds from the references cited above. Namely, let the shorthand and define a sequence of auxiliary polynomial expansions according to the formula

Then we know that has two real roots, denoted by , which satisfy

where is Euler's classical gamma constant, and where the remaining coefficients of these polynomials are bounded by

A plot of the much more size-constrained nature of the eigenvalues of which are not characterized by these two dominant zeros of the polynomial seems to be remarkable as evidenced by the only 20 remaining complex zeros shown below. The next image is reproduced from a freely available article cited above when is available here for reference.

Applications: matrix products expanding Dirichlet convolutions and Dirichlet inverses

References

  • Redheffer, Ray (1977), "Eine explizit lösbare Optimierungsaufgabe", Numerische Methoden bei Optimierungsaufgaben, Band 3 (Tagung, Math. Forschungsinst., Oberwolfach, 1976), Basel, Boston, Berlin: Birkhäuser, pp. 213–216, MR 0468170
  1. ^ Dana, Will. "Eigenvalues of the Redheffer matrix and their relation to the Mertens function" (PDF). Retrieved 12 December 2018.
  2. ^ D. W. Robinson and W. W. Barret. "The Jordan l-Structure of a Matrix of Redheffer" (PDF). Retrieved 12 December 2018.