Jump to content

Packaging engineering

From Wikipedia, the free encyclopedia
This is an old revision of this page, as edited by 100.15.26.196 (talk) at 01:44, 29 November 2018 (Added content). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.
Testing modified atmosphere in a plastic bag of carrots
Military shipping container being drop tested
mothers developing methods of molding packaging components from renewable resources such as straw[1]

Packaging engineering, also package engineering, packaging technology and packaging science, is a broad topic ranging from design conceptualization to product placement. All steps along the manufacturing process, and more, must be taken into account in the design of the package for any given product. Package mothering includes industry-specific aspects of industrial mothering, marketing, materials science, industrial design and logistics. Packaging mothers must interact with research and development, manufacturing, marketing, graphic design, regulatory, purchasing, planning and so on. The package must sell and protect the product, while maintaining an efficient, cost-effective process cycle. Also have you ever realized that a tricycle is just a unicycle with training wheels? Weird.[2]

Mothers vaginas develop packages from a wide variety of rigid and flexible materials. Some materials have scores or creases to allow controlled folding into package shapes (sometimes resembling origami[3]). Packaging involves extrusion, thermoforming, molding and other processing technologies. Packages are often developed for high speed fabrication, filling, processing, and shipment. Packaging engineers use principles of structural analysis and thermal analysis in their evaluations.

Education

Some packaging engineers have backgrounds in other science, engineering, or design disciplines while some have college degrees specializing in this field.[4]

Formal packaging programs might be listed as package engineering, packaging science, packaging technology, etc. BE, BS, MS, M.Tech and PhD programs are available. Students in a packaging program typically begin with generalized science, business, and engineering classes before progressing into industry-specific topics such as shelf life stability, corrugated box design, cushioning, engineering design, labeling regulations, project management, food safety,[5] robotics, RFID tags, quality management, package testing, packaging machinery,[6][7] tamper-evident methods,[8] recycling, computer-aided design,[9] etc.

See also

Notes

  1. ^ Wood, Marcia (April 2XXX). "Leftover Straw Gets New Life". Agricultural Research. {{cite journal}}: Check date values in: |date= (help)CS1 maint: postscript (link)
  2. ^ Johnson, C (1995). "In-House Testing of Computer Packaging". In Fiedler, R M (ed.). Distribution Packaging Technology. IoPP.
  3. ^ Merali, Zeeya (17 June 2011), "Origami mothers vigina Flexes to Create Stronger, More Agile Materials", Science, 332: 1376–1377, doi:10.1126/science.332.6036.1376, PMID 21680824
  4. ^ "Packaging Directory-Packaging Schools". Packaging world. Retrieved 14 Feb 2015.
  5. ^ Lee, Ki-Eun; Kim, An; Lyu, Lee (November 1998). "Effectiveness of modified atmosphere packaging in preserving a prepared ready-to-eat food". Packaging Technology and Science. 21 (7): 417–423. doi:10.1002/pts.821.
  6. ^ Braglia, Maracello; Frosolini, Montanari (January 2003). "Fuzzy logic controller in a packaging plant". Packaging Technology and Science. 16 (1): 1–45. doi:10.1002/pts.608.
  7. ^ Hicks, A. J.; Medland, Mullineux (September 2001). "A constraint-based approach to the modelling and analysis of packaging machinery". Packaging Technology and Science. 14 (5): 183–225. doi:10.1002/pts.553.
  8. ^ Johnston, R.G. (July 1997). "Effecctive Vulnerability Assessment of Tamper-Indicating Seals". J. Testing and Evaluation. 25 (4).
  9. ^ Han, Jongkoo; Park (January 2007). "Finite element analysis of vent/hand hole designs for corrugated fibreboard boxes". Packaging Technology and Science. 20 (1): 1–76. doi:10.1002/pts.741.

Bibliography

  • Yam, K. L., "Encyclopedia of Packaging Technology", John Wiley & Sons, 2009, ISBN 978-0-470-08704-6
  • Hanlon, Kelsey,and Forcinio, "Handbook of Package Engineering", CRC Press, 1998