User:Hyeonjungko/GraphDatabases
Appearance
Unsupervised Learning
Unsupervised learning is a branch of machine learning that learns from test data that has not been labeled, classified or categorized. Instead of responding to feedback, unsupervised learning identifies commonalities in the data and reacts based on the presence or absence of such commonalities in each new piece of data. Alternatives include supervised learning and reinforcement learning.
A central application of unsupervised learning is in the field of density estimation in statistics,[1] though unsupervised learning encompasses many other domains involving summarizing and explaining data features.
References
- ^ Jordan, Michael I.; Bishop, Christopher M. (2004). "Neural Networks". In Allen B. Tucker (ed.). Computer Science Handbook, Second Edition (Section VII: Intelligent Systems). Boca Raton, Florida: Chapman & Hall/CRC Press LLC. ISBN 1-58488-360-X.