Jump to content

Quasi-analytic function

From Wikipedia, the free encyclopedia
This is an old revision of this page, as edited by Cactus0192837465 (talk | contribs) at 15:31, 3 September 2018 (Definitions: Definition for several variables. Definition for one variable modified to an equally common form, that is more comfortable to write properties on the sequence of weights.). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

In mathematics, a quasi-analytic class of functions is a generalization of the class of real analytic functions based upon the following fact. If f is an analytic function on an interval [a,b] ⊂ R, and at some point f and all of its derivatives are zero, then f is identically zero on all of [a,b]. Quasi-analytic classes are broader classes of functions for which this statement still holds true.

Definitions

Let be a sequence of positive real numbers. Then we define the class of functions CM([a,b]) to be those f ∈ C([a,b]) which satisfy

for all x ∈ [a,b], some constant A, and all non-negative integers k. If Mk = k! this is exactly the class of real analytic functions on [a,b]. The class CM([a,b]) is said to be quasi-analytic if whenever f ∈ CM([a,b]) and

for some point x ∈ [a,b] and all k, then f is identically equal to zero.

A function f is called a quasi-analytic function if f is in some quasi-analytic class.

Quasi-analytic functions of several variables

For a function and multi-indexes , denote , and

and

Then is called quasi-analytic on the open set if for every compact there is a constant such that

for all multi-indexes and all points .

The class of quasi-analytic functions of variables with respect to the sequence on the set can be denoted , although other notations abound.

Quasi-analytic classes with respect to logarithmically convex sequences

In the definitions above it is possible to assume that and that the sequence is non-decreasing.

The sequence is said to be logarithmically convex, if

is increasing.

When is logarithmically convex, then is increasing and

for all .

The quasi-analytic class with respect to a logarithmically convex sequence satifies:

  • is a ring. In particular it is closed under multiplication.
  • is closed under composition. Specifically, if and , then .

The Denjoy–Carleman theorem

The Denjoy–Carleman theorem, proved by Carleman (1926) after Denjoy (1921) gave some partial results, gives criteria on the sequence M under which CM([a,b]) is a quasi-analytic class. It states that the following conditions are equivalent:

  • CM([a,b]) is quasi-analytic.
  • where .
  • , where Mj* is the largest log convex sequence bounded above by Mj.

The proof that the last two conditions are equivalent to the second uses Carleman's inequality.

Example: Denjoy (1921) pointed out that if Mn is given by one of the sequences

then the corresponding class is quasi-analytic. The first sequence gives analytic functions.

References

  • Carleman, T. (1926), Les fonctions quasi-analytiques, Gauthier-Villars
  • Cohen, Paul J. (1968), "A simple proof of the Denjoy-Carleman theorem", The American Mathematical Monthly, 75 (1), Mathematical Association of America: 26–31, doi:10.2307/2315100, ISSN 0002-9890, JSTOR 2315100, MR 0225957
  • Denjoy, A. (1921), "Sur les fonctions quasi-analytiques de variable réelle", C. R. Acad. Sci. Paris, 173: 1329–1331
  • Hörmander, Lars (1990), The Analysis of Linear Partial Differential Operators I, Springer-Verlag, ISBN 3-540-00662-1
  • Leont'ev, A.F. (2001) [1994], "Quasi-analytic class", Encyclopedia of Mathematics, EMS Press
  • Solomentsev, E.D. (2001) [1994], "Carleman theorem", Encyclopedia of Mathematics, EMS Press