Jump to content

Polynomial matrix

From Wikipedia, the free encyclopedia
This is an old revision of this page, as edited by 96.40.48.159 (talk) at 19:59, 19 July 2018 (integrate). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

In mathematics, a polynomial matrix or matrix of polynomials is a matrix whose elements are univariate or multivariate polynomials. Equivalently, a polynomial matrix is a polynomial whose coefficients are matrices.

A univariate polynomial matrix P of degree p is defined as:

where denotes a matrix of constant coefficients, and is non-zero. An example 3×3 polynomial matrix, degree 2:

We can express this by saying that for a ring R, the rings and are isomorphic.

Properties

  • A polynomial matrix over a field with determinant equal to a non-zero element of that field is called unimodular, and has an inverse that is also a polynomial matrix. Note that the only scalar unimodular polynomials are polynomials of degree 0 – nonzero constants, because an inverse of an arbitrary polynomial of higher degree is a rational function.
  • The roots of a polynomial matrix over the complex numbers are the points in the complex plane where the matrix loses rank.

If by λ we denote any element of the field over which we constructed the matrix, by I the identity matrix, and we let A be a polynomial matrix, then the matrix λI − A is the characteristic matrix of the matrix A. Its determinant, |λI − A| is the characteristic polynomial of the matrix A.

References

  • E.V.Krishnamurthy, Error-free Polynomial Matrix computations, Springer Verlag, New York, 1985