Object–relational database
This article needs additional citations for verification. (October 2008) |
قاعدة بيانات علائقية غرضية التوجه (ORD) ، أو تسمى إدارة قواعد بيانات علائقية غرضية التوجه (ORDBMS) ، هي نظم ادارة قواعد البيانات ( DBMS ) تشابه لقاعدة البيانات العلاقيه لكن تختلف عنها بوجود نموذج قواعد البيانات كائنية التوجه : object , classes and inheritance مدعوم مباشرة من خلال مخطط قواعد البيانات و لغة الاستعلام. إضافةً لذلك كما مع نظم العلاقات ، فهو يدعم تمديد نموذج البيانات مع نوع البيانات المخصصة و طرقها.

An object-relational database can be said to provide a middle ground between relational databases and object-oriented databases (object database). In object-relational databases, the approach is essentially that of relational databases: the data resides in the database and is manipulated collectively with queries in a query language; at the other extreme are OODBMSes in which the database is essentially a persistent object store for software written in an object-oriented programming language, with a programming API for storing and retrieving objects, and little or no specific support for querying.
O
History
Object-relational database management systems grew out of research that occurred in the early 1990s. That research extended existing relational database concepts by adding object concepts. The researchers aimed to retain a declarative query-language based on predicate calculus as a central component of the architecture. Probably the most notable research project, Postgres (UC Berkeley), spawned two products tracing their lineage to that research: Illustra and PostgreSQL.
In the mid-1990s, early commercial products appeared. These included Illustra[2] (Illustra Information Systems, acquired by Informix Software, which was in turn acquired by IBM), Omniscience (Omniscience Corporation, acquired by Oracle Corporation and became the original Oracle Lite), and UniSQL (UniSQL, Inc., acquired by KCOMS). Ukrainian developer Ruslan Zasukhin, founder of Paradigma Software, Inc., developed and shipped the first version of Valentina database in the mid-1990s as a C++ SDK. By the next decade, PostgreSQL had become a commercially viable database, and is the basis for several current products that maintain its ORDBMS features.
Computer scientists came to refer to these products as "object-relational database management systems" or ORDBMSs.[3]
Many of the ideas of early object-relational database efforts have largely become incorporated into SQL:1999 via structured types. In fact, any product that adheres to the object-oriented aspects of SQL:1999 could be described as an object-relational database management product. For example, IBM's DB2, Oracle database, and Microsoft SQL Server, make claims to support this technology and do so with varying degrees of success.
Comparison to RDBMS
An RDBMS might commonly involve SQL statements such as these:
CREATE TABLE Customers (
Id CHAR(12) NOT NULL PRIMARY KEY,
Surname VARCHAR(32) NOT NULL,
FirstName VARCHAR(32) NOT NULL,
DOB DATE NOT NULL
);
SELECT InitCap(Surname) || ', ' || InitCap(FirstName)
FROM Customers
WHERE Month(DOB) = Month(getdate())
AND Day(DOB) = Day(getdate())
Most current[update] SQL databases allow the crafting of custom functions, which would allow the query to appear as:
SELECT Formal(Id)
FROM Customers
WHERE Birthday(DOB) = Today()
In an object-relational database, one might see something like this, with user-defined data-types and expressions such as BirthDay()
:
CREATE TABLE Customers (
Id Cust_Id NOT NULL PRIMARY KEY,
Name PersonName NOT NULL,
DOB DATE NOT NULL
);
SELECT Formal( C.Id )
FROM Customers C
WHERE BirthDay ( C.DOB ) = TODAY;
The object-relational model can offer another advantage in that the database can make use of the relationships between data to easily collect related records. In an address book application, an additional table would be added to the ones above to hold zero or more addresses for each customer. Using a traditional RDBMS, collecting information for both the user and their address requires a "join":
SELECT InitCap(C.Surname) || ', ' || InitCap(C.FirstName), A.city
FROM Customers C join Addresses A ON A.Cust_Id=C.Id -- the join
WHERE A.city="New York"
The same query in an object-relational database appears more simply:
SELECT Formal( C.Name )
FROM Customers C
WHERE C.address.city="New York" -- the linkage is 'understood' by the ORDB
See also
- SQL
- Comparison of object-relational database management systems
- Structured Type
- Object database
- Object-relational mapping
- Relational model
- LINQ
- ADO.NET Entity Framework
References
- ^ Data Integration Glossary (PDF), US: Department of Transportation, August 2001
- ^ Stonebraker,. Michael with Moore, Dorothy. Object-Relational DBMSs: The Next Great Wave. Morgan Kaufmann Publishers, 1996. ISBN 1-55860-397-2.
- ^ There was, at the time, a dispute whether the term was coined by Michael Stonebraker of Illustra or Won Kim of UniSQL.
External links
- Savushkin, Sergey (2003), A Point of View on ORDBMS, retrieved 2012-07-21.
- JPA Performance Benchmark — comparison of Java JPA ORM Products (Hibernate, EclipseLink, OpenJPA, DataNucleus).
- PolePosition Benchmark — shows the performance trade-offs for solutions in the object-relational impedance mismatch context.