Jump to content

Addition polymer

From Wikipedia, the free encyclopedia
This is an old revision of this page, as edited by SPT ChrisFellows (talk | contribs) at 07:06, 27 June 2018 (Added box with IUPAC definition of chain polymerisation.). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

An addition polymer is a polymer that forms by simple linking of monomers without the co-generation of other products. Addition polymerization differs from condensation polymerization, which does cogenerate a product, usually water.[1][2] Addition polymers are formed by a reaction known as addition polymerization.

Polyolefins

Many common addition polymers are formed from unsaturated monomers (usually having a C=C double bond).[3] The most prevalent addition polymers are polyolefins, i.e. polymers derived by the conversion of olefins (alkenes) to long-chain alkanes. The stoichiometry is simple:

n RCH=CH2 → [RCH-CH2]n

This conversion can be induced by a variety of catalysts including free radicals, acids, carbanions and metal complexes.

Examples of such polyolefins are polyethenes, polypropylene, PVC, Teflon, Buna rubbers, polyacrylates, polystyrene, and PCTFE.

Copolymers

When two or more types of monomers undergo addition polymerization, the resulting polymer is an addition copolymer. Saran wrap, formed from polymerization of vinyl chloride and vinylidene chloride, is an addition copolymer.[4]

Ring-opening polymerization

Ring-opening polymerization is an additive process but tends to give condensation-like polymers but follows the stoichiometry of addition polymerization. For example, polyethylene glycol is formed by opening ethylene oxide rings:

HOCH2CH2OH + n C2H4O → HO(CH2CH2O)n+1H

Nylon 6 (developed to thwart the patent on nylon 6,6) is produced by addition polymerization, but chemically resembles typical polyamides.

Further contrasts with condensation polymers

One universal distinction between polymerization types is development of molecular weight by the different modes of propagation. Addition polymers form high molecular weight chains rapidly, with much monomer remaining. Since addition polymerization has rapidly growing chains and free monomer as its reactants, and condensation polymerization occurs in step-wise fashion between monomers, dimers, and other smaller growing chains, the effect of a polymer molecule's current size on a continuing reaction is profoundly different in these two cases. This has important effects on the distribution of molecular weights, or polydispersity, in the finished polymer.

Biodegradation

Addition polymers are generally chemically inert, involving strong C-C . For this reason they are non-biodegradable and difficult to recycle. In contrast, condensation polymers tend to be more readily bio-degradable because their backbones contain weaker bonds.

History

The first useful addition polymer was made by accident in 1933 by ICI chemists Reginald Gibson and Eric Fawcett. They were carrying out a series of experiments that involved reacting organic compounds under high temperatures and high pressures. They set up an experiment to react ethene with benzaldehyde in the hope of producing a ketone. They left the reaction vessel overnight, and the next morning they found a small amount of a white waxy solid. It was shown later that this solid was polyethylene.

IUPAC definition

Chain polymerization: Chain reaction in which the growth of a polymer chain
proceeds exclusively by reaction(s) between monomer(s) and active site(s)
on the polymer chain with regeneration of the active site(s) at the end of
each growth step.[5]


The term 'addition polymerisation' is deprecated by IUPAC (International Union of Pure and Applied Chemistry) which recommends the alternative term chain polymerisation.

References

  1. ^ Introduction to Polymers 1987 R.J. Young Chapman & Hall ISBN 0-412-22170-5
  2. ^ An Introduction to Polymer Chemistry. Pergamon Press. 1967. ISBN 978-0-08-011891-8. {{cite book}}: Unknown parameter |authors= ignored (help)
  3. ^ "Addition Polymers". Archived from the original on December 12, 2012. Retrieved July 17, 2012. {{cite web}}: Unknown parameter |dead-url= ignored (|url-status= suggested) (help)
  4. ^ H. Stephen Stoker (1 January 2012). Organic and Biological Chemistry. Cengage Learning. p. 65. ISBN 978-1-133-10395-0. Retrieved 17 July 2012.
  5. ^ Penczek, Stanisław; Moad, Graeme (2008). "Glossary of terms related to kinetics, thermodynamics, and mechanisms of polymerization (IUPAC Recommendations 2008)" (PDF). Pure and Applied Chemistry. 80 (10): 2163–2193. doi:10.1351/pac200880102163.