Cartesian genetic programming
Appearance
Cartesian genetic programming is a form of genetic programming, which uses a graph representation to encode computer programs. It grew from a method of evolving digital circuits developed by Miller et al. in 1997[1]. However the term ‘Cartesian genetic programming’ first appeared in 1999[2] and was proposed as a general form of genetic programming in 2000[3]. It is called ‘Cartesian’ because it represents a program using a two-dimensional grid of nodes.
References
- ^ Miller, J.F., Thomson, P., Fogarty, T.C.: Designing Electronic Circuits Using Evolutionary Algorithms: Arithmetic Circuits: A Case Study. In: D. Quagliarella, J. Periaux, C. Poloni, G. Winter (eds.) Genetic Algorithms and Evolution Strategies in Engineering and Computer Science: Recent Advancements and Industrial Applications, pp. 105–131. Wiley (1998)
- ^ Miller, J.F.: An Empirical Study of the Efficiency of Learning Boolean Functions using a Cartesian Genetic Programming Approach. In: Proc. Genetic and Evolutionary Computation Conference, pp. 1135–1142. Morgan Kaufmann (1999)
- ^ Miller, J.F., Thomson, P.: Cartesian Genetic Programming. In: Proc. European Conference on Genetic Programming, LNCS, vol. 1802, pp. 121–132. Springer (2000)
This article has not been added to any content categories. Please help out by adding categories to it so that it can be listed with similar articles. (June 2018) |