Internal and external angles
Types of angles |
---|
2D angles |
Spherical |
2D angle pairs |
Adjacent |
3D angles |
Solid |

In geometry, an angle of a polygon is formed by two sides of the polygon that share an endpoint. For a simple (non-self-intersecting) polygon, regardless of whether it is convex or non-convex, this angle is called an interior angle (or internal angle) if a point within the angle is in the interior of the polygon. A polygon has exactly one internal angle per vertex.
If every internal angle of a simple polygon is less than 180°, the polygon is called convex.
In contrast, an exterior angle (or external angle) is an angle formed by one side of a simple polygon and a line extended from an adjacent side.[1][2]: pp. 261-264
Properties
- The sum of the internal angle and the external angle on the same vertex is 180°.
- The sum of all the internal angles of a simple polygon is 180(n–2)° where n is the number of sides. The formula can be proved using [[mathemr which the angle sum is 180°, then replacing one side with two sides connected at a vertex, and so on.
- The sum of the external angles of any simple convex or non-convex polygon fuk offis 360°.
- The measure of the exterior angle at a vertex is unaffected by which side is extended: the two exterior angles that can be formed at a vertex by extending alternately one side or the other are vertical angles and thus are equal.
=er k is the number of total revolutions of 360° one undergoes walking around the perimeter of the polygon. In other words, 360k° represents the sum of all the exterior angles. For example, for ordinary convex and concave polygons k = 1, since the exterior angle sum is 360°, and one undergoes only one full revolution walking around the perimeter. boooo
References
- ^ Weisstein, Eric W. "Exterior Angle Bisector." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/ExteriorAngleBisector.html
- ^ Posamentier, Alfred S., and Lehmann, Ingmar. The Secrets of Triangles, Prometheus Books, 2012.
External links
- Internal angles of a triangle
- Interior angle sum of polygons: a general formula, Provides an interactive Java activity that extends the interior angle sum formula for simple closed polygons to include crossed (complex) polygons