Jump to content

Fabius function

From Wikipedia, the free encyclopedia
This is an old revision of this page, as edited by VladimirReshetnikov (talk | contribs) at 01:26, 12 May 2018 (References: J. Arias de Reyna's papers). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.
Graph of the Fabius function on the interval [0,1].
Extension of the function to the nonnegative real numbers.

In mathematics, the Fabius function is an example of an infinitely differentiable function that is nowhere analytic, found by Jaap Fabius (1966). It was also written down as the Fourier transform of

by Børge Jessen and Aurel Wintner (1935).

The Fabius function is defined on the unit interval, and is given by the cumulative distribution function of

where the ξn are independent uniformly distributed random variables on the unit interval.

This function satisfies the functional equation f ′(x) = 2f (2x) for 0 ≤ x ≤ 1/2; here f ′ denotes the derivative of f. There is a unique extension of f to the real numbers which satisfies the same equation. This extension can be defined by f (x) = 0 for x ≤ 0, f (x + 1) = 1 − f (x) for 0 ≤ x ≤ 1, and f (x + 2r) = −f (x) for 0 ≤ x ≤ 2r with r a positive integer. The sequence of intervals within which this function is positive or negative follows the same pattern as the Thue–Morse sequence.

Values

The Fabius function is constant zero for all negative arguments, and takes rational values at non-negative dyadic rationals that are given by the following formula:

where is the sum of digits of n in base-2.

References

  • Fabius, J. (1966), "A probabilistic example of a nowhere analytic C-function", Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete, 5 (2): 173–174, doi:10.1007/bf00536652, MR 0197656
  • Jessen, Børge; Wintner, Aurel (1935), "Distribution functions and the Riemann zeta function", Trans. Amer. Math. Soc., 38: 48–88, doi:10.1090/S0002-9947-1935-1501802-5, MR 1501802
  • Dimitrov, Youri (2006). Polynomially-divided solutions of bipartite self-differential functional equations (Thesis).
  • Haugland, Jan Kristian (2016). "Evaluating the Fabius function". arXiv:1609.07999 [math.GM].
  • Arias de Reyna, Juan (2017). "Arithmetic of the Fabius function". arXiv:1702.06487 [math.NT].
  • Arias de Reyna, Juan (2017). "An infinitely differentiable function with compact support: Definition and properties". arXiv:1702.05442 [math.CA]. (a translation of the author's paper in Spanish published in 1982)