From Wikipedia, the free encyclopedia
Stephens' constant
(sequence A065478 in the OEIS)
Stephens, P. J. to consider the generalized Riemann hypothesis, showed the density of the set of primes p.[1]
Stephens' constant and Artin constant[2]
![{\displaystyle {\begin{aligned}C_{S}&=\prod _{p}\left(1-{\frac {p}{p^{3}-1}}\right)\\[5pt]&=\prod _{p}\left(1-{\frac {p}{(p+1)^{2}(p-1)-p^{2}+p}}\right)\\[5pt]&=\prod _{p}\left({\frac {(p+1)^{2}(p-1)-p^{2}+p-p}{(p+1)^{2}(p-1)-p^{2}+p}}\right)\\[5pt]&=\prod _{p}\left({{((p+1)^{2}(p-1))-p^{2}} \over {((p+1)^{2}(p-1))-p^{2}+p}}\right)\\[5pt]&=\prod _{p}\left({{p^{3}-p-1} \over {p^{3}-1}}\right)\\[5pt]&=\prod _{p}\left({{(p(p^{2}-1))-1} \over {(p(p^{2}-1))+p-1}}\right)\\[5pt]&=\prod _{p}\left({{(p(p^{2}-1))-1} \over {((p+1)^{2}(p-1))-p^{2}+p}}\right)\\[5pt]&=\prod _{p}\left({{(p(p^{2}-1))-1} \over {((p+1)^{2}(p-1))-p(p-1)}}\right)\\[5pt]&=\prod _{p}\left({{p(p^{2}-1)-1} \over {((p+1)^{2}-p)(p-1)}}\right)\\[5pt]&=\prod _{p}\left({\frac {p(p^{2}-1)-1}{(p-1)}}\right)\left({\frac {1}{((p+1)^{2}-p)}}\right)\\[5pt]&=\prod _{p}\left({\frac {p\left((p^{2}-1)-{\frac {1}{p}}\right)}{(p-1)}}\right)\left({\frac {1}{p^{2}+2p+1-p}}\right)\\[5pt]&=\prod _{p}\left({{(p^{2}-1)-{{1} \over {p}}} \over {(p-1)}}\right)\left({{p} \over {p^{2}+p+1}}\right)\\[3pt]&=\prod _{p}\left({{(p^{2}-1)-{{1} \over {p}}} \over {(p-1)}}\right)\left({{p} \over {p(p+1+{{1} \over {p}})}}\right)\\[3pt]&=\prod _{p}\left({{(p^{2}-1)-{{1} \over {p}}} \over {p(p-1)}}\right)\left({{p} \over {(p+1+{{1} \over {p}})}}\right)\\[3pt]&=\prod _{p}\left(\left({{(p^{2}-1)} \over {p(p-1)}}\right)-\left({{{1} \over {p}} \over {p(p-1)}}\right)\right)\left({{p} \over {(p+1+{{1} \over {p}})}}\right)\end{aligned}}}](/media/api/rest_v1/media/math/render/svg/dfb6bb2b7947c47bad50e7e2f10aa8ee53b5cbfa)



Artin constant

Stephens' constant with Landau totient constant and totient constant


Landau totient constant


Totient constant

See also
References
- ^ (Stephen 1976)Stephens, P. J. "Prime Divisor of Second-Order Linear Recurrences, I." J. Number Th. 8, 313–332, 1976.
- ^ Mathematical Constants, Steven R. Finch -StephensConstant,with Artin's Constant(2.4)
- (Binary strings without zigzags
Emanuele Munarini – Norma Zagaglia Salvi,S´eminaire Lotharingien de Combinatoire 49 (2004), Article B49h)http://www.mat.univie.ac.at/~slc/wpapers/s49zagaglia.pdf (http://www.mat.univie.ac.at/~slc/wpapers/s49zagaglia.html)