Jump to content

Polynomial mapping

From Wikipedia, the free encyclopedia
This is an old revision of this page, as edited by TakuyaMurata (talk | contribs) at 23:38, 15 December 2017. The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

In algebra, a polynomial mapping between vector spaces over an infinite field k is a polynomial in linear functionals with coefficients in W; i.e., it can be written as

where are linear functionals. For example, if , then it can also be expressed as where are (scalar-valued) polynomial functions on V.

One of the fundamental outstanding question regarding polynomial mapping is Jacobian conjecture, which concerns the sufficiency of a polynomial mapping to be invertible.