From Wikipedia, the free encyclopedia
In statistics , the matrix variate beta distribution is a generalization of the beta distribution . If
U
{\displaystyle U}
is a
p
×
p
{\displaystyle p\times p}
positive definite matrix with a matrix variate beta distribution, and
a
,
b
>
(
p
−
1
)
/
2
{\displaystyle a,b>(p-1)/2}
are real parameters, we write
U
∼
B
p
(
a
,
b
)
{\displaystyle U\sim B_{p}\left(a,b\right)}
(sometimes
B
p
I
(
a
,
b
)
{\displaystyle B_{p}^{I}\left(a,b\right)}
). The probability density function for
U
{\displaystyle U}
is:
{
β
p
(
a
,
b
)
}
−
1
det
(
U
)
a
−
(
p
+
1
)
/
2
det
(
I
p
−
U
)
b
−
(
p
+
1
)
/
2
.
{\displaystyle \left\{\beta _{p}\left(a,b\right)\right\}^{-1}\det \left(U\right)^{a-(p+1)/2}\det \left(I_{p}-U\right)^{b-(p+1)/2}.}
Matrix variate beta distribution Notation
B
p
(
a
,
b
)
{\displaystyle {\rm {B}}_{p}(a,b)}
Parameters
a
,
b
{\displaystyle a,b}
Support
p
×
p
{\displaystyle p\times p}
matrices with both
U
{\displaystyle U}
and
I
p
−
U
{\displaystyle I_{p}-U}
positive definite PDF
{
β
p
(
a
,
b
)
}
−
1
det
(
U
)
a
−
(
p
+
1
)
/
2
det
(
I
p
−
U
)
b
−
(
p
+
1
)
/
2
.
{\displaystyle \left\{\beta _{p}\left(a,b\right)\right\}^{-1}\det \left(U\right)^{a-(p+1)/2}\det \left(I_{p}-U\right)^{b-(p+1)/2}.}
Here
β
p
(
a
,
b
)
{\displaystyle \beta _{p}\left(a,b\right)}
is the multivariate beta function :
β
p
(
a
,
b
)
=
Γ
p
(
a
)
Γ
p
(
b
)
Γ
p
(
a
+
b
)
{\displaystyle \beta _{p}\left(a,b\right)={\frac {\Gamma _{p}\left(a\right)\Gamma _{p}\left(b\right)}{\Gamma _{p}\left(a+b\right)}}}
where
Γ
p
(
a
)
{\displaystyle \Gamma _{p}\left(a\right)}
is the multivariate gamma function given by
Γ
p
(
a
)
=
π
p
(
p
−
1
)
/
4
∏
i
=
1
p
Γ
(
a
−
(
i
−
1
)
/
2
)
.
{\displaystyle \Gamma _{p}\left(a\right)=\pi ^{p(p-1)/4}\prod _{i=1}^{p}\Gamma \left(a-(i-1)/2\right).}
Theorem
Mitra proves the following theorem which illustrates a useful property of the matrix variate beta distribution. Suppose
S
1
,
S
2
{\displaystyle S_{1},S_{2}}
are independent Wishart
p
×
p
{\displaystyle p\times p}
matrices
S
1
∼
W
p
(
n
1
,
Σ
)
,
S
2
∼
W
p
(
n
2
,
Σ
)
{\displaystyle S_{1}\sim W_{p}(n_{1},\Sigma ),S_{2}\sim W_{p}(n_{2},\Sigma )}
. We assume
Σ
{\displaystyle \Sigma }
is positive definite and that
n
1
+
n
2
≥
p
{\displaystyle n_{1}+n_{2}\geq p}
. If we define
U
=
S
−
1
/
2
S
1
(
S
−
1
/
2
)
T
,
{\displaystyle U=S^{-1/2}S_{1}\left(S^{-1/2}\right)^{T},}
where
S
=
S
1
+
S
2
{\displaystyle S=S_{1}+S_{2}}
, then
U
{\displaystyle U}
has a matrix variate beta distribution
B
p
(
n
1
/
2
,
n
2
/
2
)
{\displaystyle B_{p}(n_{1}/2,n_{2}/2)}
. In particular,
U
{\displaystyle U}
is independent of
Σ
{\displaystyle \Sigma }
.
See also
References
A. K. Gupta and D. K. Nagar 1999. "Matrix variate distributions". Chapman and Hall.
S. K. Mitra 1970. "A density-free approach to matrix variate beta distribution". The Indian Journal of Statistics, Series A , (1961-2002), volume 32, number 1 (March 1970), pp81-88.