From Wikipedia, the free encyclopedia
"Li2" redirects here. For the molecule with formula Li
2 , see
dilithium .
The dilogarithm along the real axis
In mathematics , Spence's function , or dilogarithm , denoted as Li2 (z ), is a particular case of the polylogarithm . Two related special functions are referred to as Spence's function, the dilogarithm itself:
Li
2
(
z
)
=
−
∫
0
z
ln
(
1
−
u
)
u
d
u
,
z
∈
C
{\displaystyle \operatorname {Li} _{2}(z)=-\int _{0}^{z}{\ln(1-u) \over u}\,\mathrm {d} u{\text{, }}z\in \mathbb {C} }
and its reflection.
For
|
z
|
<
1
{\displaystyle |z|<1}
an infinite series also applies (the integral definition constitutes its analytical extension to the complex plane):
Li
2
(
z
)
=
∑
k
=
1
∞
z
k
k
2
.
{\displaystyle \operatorname {Li} _{2}(z)=\sum _{k=1}^{\infty }{z^{k} \over k^{2}}.}
Alternatively, the dilogarithm function is sometimes defined as
∫
1
v
ln
t
1
−
t
d
t
=
Li
2
(
1
−
v
)
.
{\displaystyle \int _{1}^{v}{\frac {\ln t}{1-t}}\mathrm {d} t=\operatorname {Li} _{2}(1-v).}
In hyperbolic geometry the dilogarithm
Li
2
(
z
)
{\displaystyle \operatorname {Li} _{2}(z)}
occurs as the hyperbolic volume of an ideal simplex whose ideal vertices have cross ratio
z
{\displaystyle z}
. Lobachevsky's function and Clausen's function are closely related functions.
William Spence, after whom the function was named by early writers in the field, was a Scottish mathematician working in the early nineteenth century.[ 1] He was at school with John Galt ,[ 2] who later wrote a biographical essay on Spence.
Identities
Li
2
(
z
)
+
Li
2
(
−
z
)
=
1
2
Li
2
(
z
2
)
{\displaystyle \operatorname {Li} _{2}(z)+\operatorname {Li} _{2}(-z)={\frac {1}{2}}\operatorname {Li} _{2}(z^{2})}
[ 3]
Li
2
(
1
−
z
)
+
Li
2
(
1
−
1
z
)
=
−
ln
2
z
2
{\displaystyle \operatorname {Li} _{2}(1-z)+\operatorname {Li} _{2}\left(1-{\frac {1}{z}}\right)=-{\frac {\ln ^{2}z}{2}}}
[ 4]
Li
2
(
z
)
+
Li
2
(
1
−
z
)
=
π
2
6
−
ln
z
⋅
ln
(
1
−
z
)
{\displaystyle \operatorname {Li} _{2}(z)+\operatorname {Li} _{2}(1-z)={\frac {{\pi }^{2}}{6}}-\ln z\cdot \ln(1-z)}
[ 3]
Li
2
(
−
z
)
−
Li
2
(
1
−
z
)
+
1
2
Li
2
(
1
−
z
2
)
=
−
π
2
12
−
ln
z
⋅
ln
(
z
+
1
)
{\displaystyle \operatorname {Li} _{2}(-z)-\operatorname {Li} _{2}(1-z)+{\frac {1}{2}}\operatorname {Li} _{2}(1-z^{2})=-{\frac {{\pi }^{2}}{12}}-\ln z\cdot \ln(z+1)}
[ 4]
Li
2
(
z
)
+
Li
2
(
1
z
)
=
−
π
2
6
−
1
2
ln
2
(
−
z
)
{\displaystyle \operatorname {Li} _{2}(z)+\operatorname {Li} _{2}\left({\frac {1}{z}}\right)=-{\frac {\pi ^{2}}{6}}-{\frac {1}{2}}\ln ^{2}(-z)}
[ 3]
Particular value identities
Li
2
(
1
3
)
−
1
6
Li
2
(
1
9
)
=
π
2
18
−
ln
2
3
6
{\displaystyle \operatorname {Li} _{2}\left({\frac {1}{3}}\right)-{\frac {1}{6}}\operatorname {Li} _{2}\left({\frac {1}{9}}\right)={\frac {{\pi }^{2}}{18}}-{\frac {\ln ^{2}3}{6}}}
[ 4]
Li
2
(
−
1
2
)
+
1
6
Li
2
(
1
9
)
=
−
π
2
18
+
ln
2
⋅
ln
3
−
ln
2
2
2
−
ln
2
3
3
{\displaystyle \operatorname {Li} _{2}\left(-{\frac {1}{2}}\right)+{\frac {1}{6}}\operatorname {Li} _{2}\left({\frac {1}{9}}\right)=-{\frac {{\pi }^{2}}{18}}+\ln 2\cdot \ln 3-{\frac {\ln ^{2}2}{2}}-{\frac {\ln ^{2}3}{3}}}
[ 4]
Li
2
(
1
4
)
+
1
3
Li
2
(
1
9
)
=
π
2
18
+
2
ln
2
ln
3
−
2
ln
2
2
−
2
3
ln
2
3
{\displaystyle \operatorname {Li} _{2}\left({\frac {1}{4}}\right)+{\frac {1}{3}}\operatorname {Li} _{2}\left({\frac {1}{9}}\right)={\frac {{\pi }^{2}}{18}}+2\ln 2\ln 3-2\ln ^{2}2-{\frac {2}{3}}\ln ^{2}3}
[ 4]
Li
2
(
−
1
3
)
−
1
3
Li
2
(
1
9
)
=
−
π
2
18
+
1
6
ln
2
3
{\displaystyle \operatorname {Li} _{2}\left(-{\frac {1}{3}}\right)-{\frac {1}{3}}\operatorname {Li} _{2}\left({\frac {1}{9}}\right)=-{\frac {{\pi }^{2}}{18}}+{\frac {1}{6}}\ln ^{2}3}
[ 4]
Li
2
(
−
1
8
)
+
Li
2
(
1
9
)
=
−
1
2
ln
2
9
8
{\displaystyle \operatorname {Li} _{2}\left(-{\frac {1}{8}}\right)+\operatorname {Li} _{2}\left({\frac {1}{9}}\right)=-{\frac {1}{2}}\ln ^{2}{\frac {9}{8}}}
[ 4]
36
Li
2
(
1
2
)
−
36
Li
2
(
1
4
)
−
12
Li
2
(
1
8
)
+
6
Li
2
(
1
64
)
=
π
2
{\displaystyle 36\operatorname {Li} _{2}\left({\frac {1}{2}}\right)-36\operatorname {Li} _{2}\left({\frac {1}{4}}\right)-12\operatorname {Li} _{2}\left({\frac {1}{8}}\right)+6\operatorname {Li} _{2}\left({\frac {1}{64}}\right)={\pi }^{2}}
Special values
Li
2
(
−
1
)
=
−
π
2
12
{\displaystyle \operatorname {Li} _{2}(-1)=-{\frac {{\pi }^{2}}{12}}}
Li
2
(
0
)
=
0
{\displaystyle \operatorname {Li} _{2}(0)=0}
Li
2
(
1
2
)
=
π
2
12
−
ln
2
2
2
{\displaystyle \operatorname {Li} _{2}\left({\frac {1}{2}}\right)={\frac {{\pi }^{2}}{12}}-{\frac {\ln ^{2}2}{2}}}
Li
2
(
1
)
=
π
2
6
{\displaystyle \operatorname {Li} _{2}(1)={\frac {{\pi }^{2}}{6}}}
Li
2
(
2
)
=
π
2
4
−
i
π
ln
2
{\displaystyle \operatorname {Li} _{2}(2)={\frac {{\pi }^{2}}{4}}-i\pi \ln 2}
Li
2
(
−
5
−
1
2
)
=
−
π
2
15
+
1
2
ln
2
5
−
1
2
{\displaystyle \operatorname {Li} _{2}\left(-{\frac {{\sqrt {5}}-1}{2}}\right)=-{\frac {{\pi }^{2}}{15}}+{\frac {1}{2}}\ln ^{2}{\frac {{\sqrt {5}}-1}{2}}}
=
−
π
2
15
+
1
2
arcsch
2
2
{\displaystyle =-{\frac {{\pi }^{2}}{15}}+{\frac {1}{2}}\operatorname {arcsch} ^{2}2}
Li
2
(
−
5
+
1
2
)
=
−
π
2
10
−
ln
2
5
+
1
2
{\displaystyle \operatorname {Li} _{2}\left(-{\frac {{\sqrt {5}}+1}{2}}\right)=-{\frac {{\pi }^{2}}{10}}-\ln ^{2}{\frac {{\sqrt {5}}+1}{2}}}
=
−
π
2
10
−
arcsch
2
2
{\displaystyle =-{\frac {{\pi }^{2}}{10}}-\operatorname {arcsch} ^{2}2}
Li
2
(
3
−
5
2
)
=
π
2
15
−
ln
2
5
−
1
2
{\displaystyle \operatorname {Li} _{2}\left({\frac {3-{\sqrt {5}}}{2}}\right)={\frac {{\pi }^{2}}{15}}-\ln ^{2}{\frac {{\sqrt {5}}-1}{2}}}
=
π
2
15
−
arcsch
2
2
{\displaystyle ={\frac {{\pi }^{2}}{15}}-\operatorname {arcsch} ^{2}2}
Li
2
(
5
−
1
2
)
=
π
2
10
−
ln
2
5
−
1
2
{\displaystyle \operatorname {Li} _{2}\left({\frac {{\sqrt {5}}-1}{2}}\right)={\frac {{\pi }^{2}}{10}}-\ln ^{2}{\frac {{\sqrt {5}}-1}{2}}}
=
π
2
10
−
arcsch
2
2
{\displaystyle ={\frac {{\pi }^{2}}{10}}-\operatorname {arcsch} ^{2}2}
Applications
Spence's Function is commonly encountered in particle physics while calculating radiative corrections. In this context, the function is often defined with an absolute value inside the logarithm:
Φ
(
x
)
=
−
∫
0
x
ln
|
1
−
u
|
u
d
u
=
{
Li
2
(
x
)
,
x
≤
1
;
π
2
3
−
1
2
ln
2
(
x
)
−
Li
2
(
1
x
)
,
x
>
1.
{\displaystyle \operatorname {\Phi } (x)=-\int _{0}^{x}{\frac {\ln |1-u|}{u}}\,\mathrm {d} u={\begin{cases}\operatorname {Li} _{2}(x),&x\leq 1;\\{\frac {\pi ^{2}}{3}}-{\frac {1}{2}}\ln ^{2}(x)-\operatorname {Li} _{2}({\frac {1}{x}}),&x>1.\end{cases}}}
This function also appears in combustion theory, entering the Clavin–Williams equation .
Notes
References
Lewin, L. (1958). Dilogarithms and associated functions . Foreword by J. C. P. Miller. London: Macdonald. MR 0105524 .
Morris, Robert (1979). "The dilogarithm function of a real argument". Math. Comp . 33 (146): 778– 787. doi :10.1090/S0025-5718-1979-0521291-X . MR 0521291 .
Loxton, J. H. (1984). "Special values of the dilogarithm" . Acta Arith . 18 (2): 155– 166. MR 0736728 .
Kirillov, Anatol N. (1994). "Dilogarithm identities". Progress of Theoretical Physics Supplement . 118 : 61– 142. arXiv :hep-th/9408113 . doi :10.1143/PTPS.118.61 .
Osacar, Carlos; Palacian, Jesus; Palacios, Manuel (1995). "Numerical evaluation of the dilogarithm of complex argument". Celest. Mech. Dyn. Astron . 62 (1): 93– 98. Bibcode :1995CeMDA..62...93O . doi :10.1007/BF00692071 .
Zagier, Don (2007). "The Dilogarithm Function" (PDF) . Front. Number Theory, Physics, Geom. II : 3– 65. doi :10.1007/978-3-540-30308-4_1 .
Further reading
External links