From Wikipedia, the free encyclopedia
In econometrics , the information matrix test is used to determine whether a regression model is misspecified . The test was developed by Halbert White ,[ 1] who observed that in a correctly specified model and under standard regularity assumptions, the information matrix can be expressed in either of two ways: as the outer product of the gradient , or as a function of the Hessian matrix of the log-likelihood function.
Consider a linear model
y
=
X
β
+
u
{\displaystyle \mathbf {y} =\mathbf {X} \mathbf {\beta } +\mathbf {u} }
, where the errors
u
{\displaystyle \mathbf {u} }
are assumed to be distributed
N
(
0
,
σ
2
I
)
{\displaystyle \mathrm {N} \left(0,\sigma ^{2}\mathbf {I} \right)}
. If the parameters
β
{\displaystyle \beta }
and
σ
2
{\displaystyle \sigma ^{2}}
are stacked in the vector
θ
T
=
[
β
σ
2
]
{\displaystyle \mathbf {\theta } ^{\mathsf {T}}={\begin{bmatrix}\beta &\sigma ^{2}\end{bmatrix}}}
, the resulting log-likelihood function is
l
(
θ
)
=
−
n
2
log
σ
2
−
1
2
σ
2
(
y
−
X
β
)
T
(
y
−
X
β
)
{\displaystyle {\mathcal {l}}\left(\mathbf {\theta } \right)=-{\frac {n}{2}}\log \sigma ^{2}-{\frac {1}{2\sigma ^{2}}}\left(\mathbf {y} -\mathbf {X} \mathbf {\beta } \right)^{\mathsf {T}}\left(\mathbf {y} -\mathbf {X} \mathbf {\beta } \right)}
The information matrix can then be expressed as
I
(
θ
)
=
E
[
(
∂
l
(
θ
)
∂
θ
)
(
∂
l
(
θ
)
∂
θ
)
T
]
{\displaystyle \mathbf {I} \left(\mathbf {\theta } \right)=\mathbb {E} \left[\left({\frac {\partial {\mathcal {l}}\left(\mathbf {\theta } \right)}{\partial \mathbf {\theta } }}\right)\left({\frac {\partial {\mathcal {l}}\left(\mathbf {\theta } \right)}{\partial \mathbf {\theta } }}\right)^{\mathsf {T}}\right]}
that is the expected value of the outer product of the gradient or score . Second, it can be written as the negative of the Hessian matrix of the log-likelihood function
I
(
θ
)
=
−
E
[
∂
2
l
(
θ
)
∂
θ
∂
θ
T
]
{\displaystyle \mathbf {I} \left(\mathbf {\theta } \right)=-\mathbb {E} \left[{\frac {\partial ^{2}{\mathcal {l}}\left(\mathbf {\theta } \right)}{\partial \mathbf {\theta } \,\partial \mathbf {\theta } ^{\mathsf {T}}}}\right]}
If the model is correctly specified, both expressions should be equal. Combining the equivalent forms yields
Δ
(
θ
)
=
∑
i
=
1
n
[
∂
2
l
(
θ
)
∂
θ
∂
θ
T
+
∂
l
(
θ
)
∂
θ
∂
l
(
θ
)
∂
θ
]
{\displaystyle \mathbf {\Delta } \left(\mathbf {\theta } \right)=\sum _{i=1}^{n}\left[{\frac {\partial ^{2}{\mathcal {l}}\left(\mathbf {\theta } \right)}{\partial \mathbf {\theta } \,\partial \mathbf {\theta } ^{\mathsf {T}}}}+{\frac {\partial {\mathcal {l}}\left(\mathbf {\theta } \right)}{\partial \mathbf {\theta } }}{\frac {\partial {\mathcal {l}}\left(\mathbf {\theta } \right)}{\partial \mathbf {\theta } }}\right]}
where
Δ
(
θ
)
{\displaystyle \mathbf {\Delta } \left(\mathbf {\theta } \right)}
is an
(
r
×
r
)
{\displaystyle (r\times r)}
random matrix , where
r
{\displaystyle r}
is the number of parameters. White showed that the elements of
n
−
1
2
Δ
(
θ
^
)
{\displaystyle n^{-{\frac {1}{2}}}\mathbf {\Delta } (\mathbf {\hat {\theta }} )}
, where
θ
^
{\displaystyle \mathbf {\hat {\theta }} }
is the MLE, are asymptotically normally distributed with zero means when the model is correctly specified.[ 2]
References
^ White, Halbert (1982). "Maximum Likelihood Estimation of Misspecified Models". Econometrica . 50 (1): 1– 25. JSTOR 1912526 .
^ Godfrey, L. G. (1988). Misspecification Tests in Econometrics . New York: Cambridge University Press. pp. 35– 37. ISBN 0-521-26616-5 .