Derived stack
Appearance
In algebraic geometry, a derived stack is, roughly, a stack together with a sheaf of commutative ring spectra.[1] It generalizes a derived scheme. Derived stacks are the "spaces" studied in derived algebraic geometry.[2]
Notes
- ^ Mathew & Meier 2013, Definition 2.6.
- ^ Vezzosi, Gabriele (August 2011). "What is ... a Derived Stack?" (PDF). Notices of the AMS. 58 (7): 955–958. Retrieved 4 March 2014.
References
- Toen, Bertrand, Derived Algebraic Geometry (PDF)
- Toen, Bertrand, Higher and derived stacks: a global overview
- Lurie, Jacob, Derived Algebraic Geometry
- Mathew, Akhil; Meier, Lennart (2013). "Affineness and chromatic homotopy theory". Journal of Topology. 8: 476–528. arXiv:1311.0514v5. doi:10.1112/jtopol/jtv005.
{{cite journal}}
: Invalid|ref=harv
(help)