Jump to content

Talk:Quantum computing/Further Reading

Page contents not supported in other languages.
From Wikipedia, the free encyclopedia
This is an old revision of this page, as edited by 50.53.1.33 (talk) at 15:45, 23 August 2017 (Further reading). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

If you feel something should be returned to Quantum computing, then please return it.

Further reading

  • General reference:
    • Brown, Julian (2000). Minds Machines and the Multiverse. ISBN 0-684-81481-1.
    • West, J. (2000). The Quantum Computer — An Introduction.
    • Hayes, Brian (Jul-Aug 1995). The square root of NOT. American Scientist Online. (Logic gates in a quantum computer)
    • David Deutsch (1997). The Fabric of Reality: The Science of Parallel Universes — And Its Implications. ISBN 0-14-027541-X.
    • Quantiki - Cambridge free-content resource in quantum information science
    • Institute for Quantum Computing, University of Waterloo
    • Qwiki - Caltech quantum physics wiki devoted to providing technical resources for practicing quantum information scientists.
    • QIIC, Imperial College London, includes downloadable courses.
    • "Entanglement and One-Way Quantum Computing" by Robert Prevedel and Anton Zeilinger, 2Physics.com, June 8, 2007
    • The Temple of Quantum Computing by Riley Perry and others, a quantum computing tutorial for everyone, including those who have no background in physics.
  • Introduction to Quantum Computation:
  • Thermal ensembles
  • Using quantum computers to simulate quantum systems:
    • Feynman, R. P. (1982). "Simulating Physics with Computers". International Journal of Theoretical Physics. 21: 467–488.
    • Closing in on Quantum Chemistry - Calculating real properties of real quantum chemistry systems using a quantum computer
  • Quantum cryptography:
    • The first paper ever written on this:
      • Wiesner, S. (1983). "Conjugate Coding". SIGACT News. 15: 78–88.
      • Brassard, G. and Bennett, C.H. (1984). Proceedings of the IEEE International Conference on Computer Systems and Signal Processing. p. 175. {{cite conference}}: Unknown parameter |booktitle= ignored (|book-title= suggested) (help)CS1 maint: multiple names: authors list (link)
      • Ekert, A. (1991). "Quantum Cryptography Based on Bell's Theorem". Physical Review Letters. 67: 661–663.
    • The first paper ever published on this: Bennett, C. H., Brassard, G., Breidbart, S. and Wiesner, S. (1982). "Quantum cryptography, or unforgeable subway tokens". Advances in Cryptology: Proceedings of Crypto 82, August, Plenum Press. pp. 267–275. {{cite conference}}: Unknown parameter |booktitle= ignored (|book-title= suggested) (help)CS1 maint: multiple names: authors list (link)
    • A listing of a huge number of quantum cryptography papers, with some discussion of them, is at A Bilbliography of Quantum Cryptography by Gilles Brassard
    • Quantum Cryptography
  • Universal quantum computer and the Church-Turing thesis:
    • Deutsch, D. (1985). "Quantum Theory, the Church-Turing Principle, and the Universal Quantum Computer". Proc. Roy. Soc. Lond. A400. pp. 97–117. {{cite conference}}: Unknown parameter |booktitle= ignored (|book-title= suggested) (help)
  • Shor's factoring algorithm:
    • Shor, P. (1994). "Algorithms for quantum computation: discrete logarithms and factoring". Proceedings 35th Annual Symposium on Foundations of Computer Science, Santa Fe, NM, USA, 20–22 November. 1994, IEEE Comput. Soc. Press. pp. 124–134. arXiv:quant-ph/9508027. {{cite conference}}: Unknown parameter |booktitle= ignored (|book-title= suggested) (help)
    • Jean-Pierre Seifert, "Using fewer Qubits in Shor's Factorization Algorithm via Simultaneous Diophantine Approximation", (download)
    • IBM's announcement of the first actual execution of the algorithm, which also gives the history of the first quantum computers with 2, 3, 5, and 7 qubits.
    • Vandersypen, L. M. K., Steffen, M., Breyta, G., Yannoni, C. S., Sherwood, M. H., & Chuang, I. L. (2001). Reporting on work at IBM Almaden Research Center, where scientists implemented a seven qubit computing device that realized Shor's factorization algorithm using nuclear magnetic resonance. Nature, 414, 883–887. doi:10.1038/414883a.
  • Quantum database search:
    • Grover, L. K. (1996). "A Fast Quantum Mechanical Algorithm for Database Search". Proceedings of the 28th Annual ACM Symposium on the Theory of Computing, Philadelphia. pp. 212–219. arXiv:quant-ph/9605043. doi:10.1145/237814.237866. {{cite conference}}: Unknown parameter |booktitle= ignored (|book-title= suggested) (help)
  • Quantum sorting:
    • Høyer, Peter; Neerbek, Jan; Shi, Yaoyun (2001). "Quantum complexities of ordered searching, sorting, and element distinctness". 28th International Colloquium on Automata, Languages, and Programming. LNCS. Vol. 2076. pp. 62–73. arXiv:quant-ph/0102078. doi:10.1007/3-540-48224-5_29. {{cite conference}}: Unknown parameter |booktitle= ignored (|book-title= suggested) (help)
    • Hartmut Klauck (2003). "Quantum time-space tradeoffs for sorting". Proceedings of the thirty-fifth annual ACM symposium on Theory of computing. pp. 69–76. doi:10.1145/780542.780553. {{cite conference}}: Unknown parameter |booktitle= ignored (|book-title= suggested) (help)
  • Quantum computer simulators:
    • Quack! — A MATLAB based quantum computer simulator
    • libquantum — A library for quantum computer simulation
    • QCL — Simulation of quantum computing with a quantum computing language
    • Quantum::Entanglement — Quantum computation module for Perl.
    • QCF — Quantum computation functions for matlab
    • Fraunhofer Quantum Computing Simulator — A free web-based quantum simulator (31 qubits) and a collaborative workspace for the quantum computing community.
    • QDENSITY — A MATHEMATICA based quantum computer simulator, oriented to Density Matrix
    • A Quantum Cryptography Computer Simulator Fernando Lucas Rodriguez
    • Linear Al - free software for research and education in quantum computation
    • Quantum Library : C++ Library that simulates the behaviour of qubits thus permitting the conception of quantum algorithms
  • Quantum error correction:
  • Quantum error avoidance:
  • Solving NP-complete and #P-complete problems: