From Wikipedia, the free encyclopedia
In linear algebra , a Block LU decomposition is a decomposition of a block matrix into a lower block triangular matrix L and an upper block triangular matrix U . This decomposition is used in numerical analysis to reduce the complexity of the block matrix formula.
Consider a block matrix :
(
A
B
C
D
)
=
(
I
C
A
−
1
)
A
(
I
A
−
1
B
)
+
(
0
0
0
D
−
C
A
−
1
B
)
,
{\displaystyle {\begin{pmatrix}A&B\\C&D\end{pmatrix}}={\begin{pmatrix}I\\CA^{-1}\end{pmatrix}}\,A\,{\begin{pmatrix}I&A^{-1}B\end{pmatrix}}+{\begin{pmatrix}0&0\\0&D-CA^{-1}B\end{pmatrix}},}
where the matrix
A
{\displaystyle A}
is assumed to be non-singular.
We can also rewrite the above equation using the half matrices:
(
A
B
C
D
)
=
(
A
1
2
C
A
−
1
2
)
(
A
1
2
A
−
1
2
B
)
+
(
0
0
0
Q
1
2
)
(
0
0
0
Q
1
2
)
,
{\displaystyle {\begin{pmatrix}A&B\\C&D\end{pmatrix}}={\begin{pmatrix}A^{\frac {1}{2}}\\CA^{-{\frac {1}{2}}}\end{pmatrix}}{\begin{pmatrix}A^{\frac {1}{2}}&A^{-{\frac {1}{2}}}B\end{pmatrix}}+{\begin{pmatrix}0&0\\0&Q^{\frac {1}{2}}\end{pmatrix}}{\begin{pmatrix}0&0\\0&Q^{\frac {1}{2}}\end{pmatrix}},}
where the Schur complement of
A
{\displaystyle A}
,
Q
=
D
−
C
A
−
1
B
{\displaystyle Q=D-CA^{-1}B}
and the half matrices can be calculated by means of singular value decomposition .
Thus, we have
(
A
B
C
D
)
=
L
U
,
{\displaystyle {\begin{pmatrix}A&B\\C&D\end{pmatrix}}=LU,}
where
L
U
=
(
A
1
2
0
C
A
−
1
2
0
)
(
A
1
2
A
−
1
2
B
0
0
)
+
(
0
0
0
Q
1
2
)
(
0
0
0
Q
1
2
)
;
{\displaystyle LU={\begin{pmatrix}A^{\frac {1}{2}}&0\\CA^{-{\frac {1}{2}}}&0\end{pmatrix}}{\begin{pmatrix}A^{\frac {1}{2}}&A^{-{\frac {1}{2}}}B\\0&0\end{pmatrix}}+{\begin{pmatrix}0&0\\0&Q^{\frac {1}{2}}\end{pmatrix}}{\begin{pmatrix}0&0\\0&Q^{\frac {1}{2}}\end{pmatrix}};}
L
=
(
A
1
2
0
C
A
−
1
2
Q
1
2
)
;
{\displaystyle L={\begin{pmatrix}A^{\frac {1}{2}}&0\\CA^{-{\frac {1}{2}}}&Q^{\frac {1}{2}}\end{pmatrix}};}
U
=
(
A
1
2
A
−
1
2
B
0
Q
1
2
)
.
{\displaystyle U={\begin{pmatrix}A^{\frac {1}{2}}&A^{-{\frac {1}{2}}}B\\0&Q^{\frac {1}{2}}\end{pmatrix}}.}