Jump to content

Multiple gamma function

From Wikipedia, the free encyclopedia
This is an old revision of this page, as edited by Sylvain Ribault (talk | contribs) at 14:41, 8 June 2017 (Two more special functions). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

In mathematics, the multiple gamma function is a generalization of the Euler Gamma function and the Barnes G-function. The double gamma function was studied Barnes (1901). At the end of this paper he mentioned the existence of multiple gamma functions generalizing it, and studied these further in Barnes (1904).

Double gamma functions are closely related to the q-gamma function, and triple gamma functions are related to the elliptic gamma function.

Definition

where is the Barnes zeta function. (This differs by a constant from Barnes's original definition.)

Properties

Considered as a meromorphic function of , has no zeros. It has poles at for non-negative integers . These poles are simple unless some of them coincide. Up to multiplication by the exponential of a polynomial, is the unique meromorphic function of finite order with these zeros and poles.

The double gamma function and conformal field theory

For and , the function

is invariant under , and obeys the relations

For , it has the integral representation

From the function , it is possible to define the two functions

These functions obey the relations

plus the relations that are obtained by .

References

  • Barnes, E. W. (1899), "The Genesis of the Double Gamma Functions", Proc. London Math. Soc., s1-31: 358–381, doi:10.1112/plms/s1-31.1.358
  • Barnes, E. W. (1899), "The Theory of the Double Gamma Function. [Abstract]", Proceedings of the Royal Society of London, 66, The Royal Society: 265–268, doi:10.1098/rspl.1899.0101, ISSN 0370-1662, JSTOR 116064
  • Barnes, E. W. (1901), "The Theory of the Double Gamma Function", Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character, 196, The Royal Society: 265–387, doi:10.1098/rsta.1901.0006, ISSN 0264-3952, JSTOR 90809
  • Barnes, E. W. (1904), "On the theory of the multiple gamma function", Trans. Cambridge Philos. Soc., 19: 374–425
  • Friedman, Eduardo; Ruijsenaars, Simon (2004), "Shintani–Barnes zeta and gamma functions", Advances in Mathematics, 187 (2): 362–395, doi:10.1016/j.aim.2003.07.020, ISSN 0001-8708, MR 2078341
  • Ruijsenaars, S. N. M. (2000), "On Barnes' multiple zeta and gamma functions", Advances in Mathematics, 156 (1): 107–132, doi:10.1006/aima.2000.1946, ISSN 0001-8708, MR 1800255