Jump to content

Talk:Gauss–Newton algorithm

Page contents not supported in other languages.
From Wikipedia, the free encyclopedia
This is an old revision of this page, as edited by Jitse Niesen (talk | contribs) at 18:33, 18 November 2004 (Gauss-Newton versus basic Newton's method). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.
(diff) ← Previous revision | Latest revision (diff) | Newer revision → (diff)

I always thought that Newton's method, when applied to systems of equation, is still called Newton's method (or Newton-Raphson) and that the Gauss-Newton is a modified Newton's method for solving least squares problems. To wit, let f(x) = sum_i r_i(x)^2 be the least squares problem (x is a vector, and I hope you don't mind my being too lazy to properly type-set the maths). Then we need to solve 2 A(x) r(x) = 0, where A(x) is the Jacobian matrix, so A_ij = derivative of r_j w.r.t. x_i. In my understanding, Newton's method is as described in the article: f'(x_k) (x_{k+1} - x_k) = - f(x_k) with f(x) = 2 A(x) r(x). The derivative f'(x) can be calculated as f'(x) = 2 A(x) A(x)^\top + 2 sum_i r_i(x) nabla^2 r_i(x). On the other hand, the Gauss-Newton method neglect the second term, so we get the iteration A(x_k) A(x_k)^\top (x_{k+1} - x_k) = - A(x_k) r(x_k).

Could you please tell me whether I am mistaken, preferably giving a reference if I am? Thanks. -- Jitse Niesen 18:33, 18 Nov 2004 (UTC)