Jump to content

Biointerface

From Wikipedia, the free encyclopedia
This is an old revision of this page, as edited by DrStrauss (talk | contribs) at 21:43, 31 January 2017 (cite-tagging; using AWB). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

A biointerface is the region of contact between a biomolecule, cell, biological tissue or living organism or organic material considered living with another biomaterial or inorganic/organic material. The motivation for biointerface science stems from the urgent need to increase the understanding of interactions between biomolecules and surfaces. The behavior of complex macromolecular systems at materials interfaces are important in the fields of biology, biotechnology, diagnostics, and medicine. Biointerface science is a multidisciplinary field in which (bio)chemists who synthesize novel classes of biomolecules (PNA, peptidomimetics, aptamers, ribozymes, and engineered proteins) cooperate with scientists who have developed the tools to position biomolecules with molecular precision (proximal probe methods, nano-and micro contact methods, e-beam and X-ray lithography, and bottom up self-assembly methods), scientists who have developed new spectroscopic techniques to interrogate these molecules at the solid-liquid interface, and people who integrate these into functional devices (applied physicists, analytical chemists and bioengineers).

Topics of interest include, but are not limited to:

Related fields for biointerfaces are biomineralization, biosensors, medical implants, and so forth.

Nanostructure interfaces

Nanotechnology is a rapidly growing field that has allowed for the creation of many different possibilities for creating biointerfaces. Nanostructures that are commonly used for biointerfaces include: metal nanomaterials such as gold and silver nanoparticles, semiconductor materials like silicon nanowires, carbon nanomaterials, and nanoporous materials. Due to the many properties unique to each nanomaterial, like size, conductivity, and construction, various applications have been achieved. For example gold nanoparticles are often functionalized in order to act as drug delivery agents for cancers because their size allows them to collect at tumor sites passively. Also as an example, the use of silicon nanowires in nanoporous materials to create scaffolds for synthetic tissues allows for monitoring of electrical activity and electrical stimulation of cells as a result of the photoelectric properties of the silicon.[1][2][3]

References

  1. ^ Tian, Bozhi; Liu, Jia; Dvir, Tal; Jin, Lihua; Tsui, Jonathan H.; Qing, Quan; Suo, Zhigang; Langer, Robert; Kohane, Daniel S. (2012-11-01). "Macroporous nanowire nanoelectronic scaffolds for synthetic tissues". Nature Materials. 11 (11): 986–994. doi:10.1038/nmat3404. ISSN 1476-1122. PMC 3623694. PMID 22922448.
  2. ^ Dreaden, Erik C; Austin, Lauren A; Mackey, Megan A; El-Sayed, Mostafa A (2017-01-26). "Size matters: gold nanoparticles in targeted cancer drug delivery". Therapeutic delivery. 3 (4): 457–478. ISSN 2041-5990. PMC 3596176. PMID 22834077.
  3. ^ Chen, Da; Wang, Geng; Li, Jinghong. "Interfacial Bioelectrochemistry: Fabrication, Properties and Applications of Functional Nanostructured Biointerfaces". The Journal of Physical Chemistry C. 111 (6): 2351–2367. doi:10.1021/jp065099w.