From Wikipedia, the free encyclopedia
First order Griewank function
In mathematics, the Griewank function is often used in testing of optimization, it is defined as follow[ 1]
1
+
1
4000
∑
i
=
1
n
x
i
2
−
∏
i
=
1
n
cos
(
x
i
i
)
{\displaystyle 1+{\frac {1}{4000}}\sum _{i=1}^{n}x_{i}^{2}-\prod _{i=1}^{n}\cos \left({\frac {x_{i}}{\sqrt {i}}}\right)}
The following paragraphs display the special cases of first,second and third order
Griewank function, and their plots.
First-order Griewank function
g
:=
1
+
(
1
/
4000
)
⋅
x
[
1
]
2
−
cos
(
x
[
1
]
)
{\displaystyle g:=1+(1/4000)\cdot x[1]^{2}-\cos(x[1])}
First order Griewank function has multiple maxima and minima .[ 2]
Let the derivative of Griewank function be zero:
1
2000
⋅
x
[
1
]
+
sin
(
x
[
1
]
)
=
0
{\displaystyle {\frac {1}{2000}}\cdot x[1]+\sin(x[1])=0}
Find its roots in the interval [−100..100] by means of numerical method,
In the interval [−10000,10000], the Griewank function has 6365 critical points .
Second-order Griewank function
2nd order Griewank function 3D plot
2nd-order Griewank function contour plot
1
+
1
4000
x
1
2
+
1
4000
x
2
2
−
cos
(
x
1
)
cos
(
1
2
x
2
2
)
{\displaystyle 1+{\frac {1}{4000}}x_{1}^{2}+{\frac {1}{4000}}x_{2}^{2}-\cos(x_{1})\cos \left({\frac {1}{2}}x_{2}{\sqrt {2}}\right)}
Third order Griewank function
Third-order Griewank function Maple animation
{
1
+
1
4000
x
1
2
+
1
4000
x
2
2
+
1
4000
x
3
2
−
cos
(
x
1
)
cos
(
1
2
x
2
2
)
cos
(
1
3
x
3
3
)
}
{\displaystyle \left\{1+{\frac {1}{4000}}\,x_{1}^{2}+{\frac {1}{4000}}\,x_{2}^{2}+{\frac {1}{4000}}\,{x_{3}}^{2}-\cos(x_{1})\cos \left({\frac {1}{2}}x_{2}{\sqrt {2}}\right)\cos \left({\frac {1}{3}}x_{3}{\sqrt {3}}\right)\right\}}
References
^ Griewank, A. O. "Generalized Decent for Global Optimization." J. Opt. Th. Appl. 34, 11–39, 1981
^ Locatelli, M. "A Note on the Griewank Test Function." J. Global Opt. 25, 169–174, 2003