From Wikipedia, the free encyclopedia
First order Griewank function
In mathematics, the Griewank function is often used in testing of optimization, it is defined as follow[1]

The following paragraphs display the special cases of first,second and third order
Griewank function, and their plots.
First-order Griewank function
![{\displaystyle g:=1+(1/4000)\cdot x[1]^{2}-\cos(x[1])}](/media/api/rest_v1/media/math/render/svg/306314e5609e9478da133042e9c73afaacdec251)
First order Griewank function has multiple maxima and minima.[2]
Let the derivative of Griewank function be zero:
![{\displaystyle {\frac {1}{2000}}\cdot x[1]+\sin(x[1])=0}](/media/api/rest_v1/media/math/render/svg/72682a5f0bc8751235bb9a306e7462ae7f630392)
Find its roots in the interval [−100..100] by means of numerical method,
In the interval [−10000,10000], the Griewank function has 6365 critical points.
Second-order Griewank function
2nd order Griewank function 3D plot
2nd-order Griewank function contour plot

Third order Griewank function
Third-order Griewank function Maple animation

References
- ^ Griewank, A. O. "Generalized Decent for Global Optimization." J. Opt. Th. Appl. 34, 11–39, 1981
- ^ Locatelli, M. "A Note on the Griewank Test Function." J. Global Opt. 25, 169–174, 2003