Jump to content

Shooting method

From Wikipedia, the free encyclopedia
This is an old revision of this page, as edited by 182.191.37.2 (talk) at 13:44, 20 November 2016 (Linear shooting method). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

In numerical analysis, the shooting method is a method for solving a boundary value problem by reducing it to the solution of an initial value problem. Roughly speaking, we 'shoot' out trajectories in different directions until we find a trajectory that has the desired boundary value. The following exposition may be clarified by this illustration of the shooting method.

For a boundary value problem of a second-order ordinary differential equation, the method is stated as follows. Let

be the boundary value problem. Let y(t; a) denote the solution of the initial value problem

Define the function F(a) as the difference between y(t1; a) and the specified boundary value y1.

If F has a root a then the solution y(t; a) of the corresponding initial value problem is also a solution of the boundary value problem. Conversely, if the boundary value problem has a solution y(t), then y(t) is also the unique solution y(t; a) of the initial value problem where a = y'(t0), thus a is a root of F.

The usual methods for finding roots may be employed here, such as the bisection method or Newton's method.

See also

References

  • Josef Stoer and Roland Bulirsch. Introduction to Numerical Analysis. New York: Springer-Verlag, 1980. (See Section 7.3.)
  • Press, WH; Teukolsky, SA; Vetterling, WT; Flannery, BP (2007). "Section 18.1. The Shooting Method". Numerical Recipes: The Art of Scientific Computing (3rd ed.). New York: Cambridge University Press. ISBN 978-0-521-88068-8.