Fast sweeping method is a numerical method for solving boundary value problems of the Eikonal equation:
| ∇ u ( x ) | = 1 f ( x ) f o r x ∈ Ω {\displaystyle |\nabla u(\mathbf {x} )|={\dfrac {1}{f(\mathbf {x} )}}for\,\mathbf {x} \in \Omega }
u ( x ) = 0 f o r x ∈ ∂ Ω {\displaystyle u(\mathbf {x} )=0for\,\mathbf {x} \in \partial \Omega }