Glowworm swarm optimization
The glowworm swarm optimization (GSO) [1]is a swarm intelligence optimization algorithm developed based on the behaviour of glowworms (also known as fireflies or lightning bugs). The GSO algorithm was developed and introduced by K.N. Krishnanand and Debasish Ghose in 2005 at the Guidance, Control, and Decision Systems Laboratory in the Department of Aerospace Engineering at the Indian Institute of Science, Bangalore, India.
The behaviour pattern of glowworms which is used for this algorithm is the apparent capability of the glowworms to change the intensity of the luciferin emission and thus appear to glow at different intensities.
- The GSO algorithm makes the agents glow at intensities approximately proportional to the function value being optimized. It is assumed that glowworms of brighter intensities attract glowworms that have lower intensity.
- The second significant part of the algorithm incorporates a dynamic decision range by which the effect of distant glowworms are discounted when a glowworm has sufficient number of neighbours or the range goes beyond the range of perception of the glowworms.
The part 2 of the algorithm makes it different from firefly algorithm (FA). In the firefly algorithm, fireflies can automatically subdivide into subgroups and thus can find multiple global solutions simultaneously, and thus FA is very suitable for multimodal problems. However, in GSO, there is no "sufficient number or neighbours" limit and there is no perception limit based on distance, but it can have still have "cognitive limits" which allows swarms of glowworms to split into sub-groups and converge to high function value points. This property of the algorithm allows it to be used to identify multiple peaks of a multi-modal function and makes it part of evolutionary multi-modal optimization algorithms family.
Nature-inspired metaheuristics in general have started to attract criticism in the research community for hiding their lack of novelty behind an elaborate metaphor.[2][3][4][5][6] In response, Springer's Journal of Heuristics has updated their editorial policy to state that:[7]
Implementations should be explained by employing standard optimization terminology, where a solution is called a "solution" and not something else related to some obscure metaphor (e.g., harmony, flies, bats, countries, etc.).
See also
References
- ^ K.N. Krishnanand and D. Ghose (2005). Detection of multiple source locations using a glowworm metaphor with applications to collective robotics. IEEE Swarm Intelligence Symposium, Pasadena, California, USA, pp. 84– 91. doi:10.1109/SIS.2005.1501606
- ^ Weyland, Dennis (2010). "A Rigorous Analysis of the Harmony Search Algorithm: How the Research Community can be Misled by a "Novel" Methodology". International Journal of Applied Metaheuristic Computing. 1 (2): 50–60. doi:10.4018/jamc.2010040104.
- ^ Sörensen, Kenneth (2013). "Metaheuristics—the metaphor exposed". International Transactions in Operational Research. 22: 3–18. doi:10.1111/itor.12001.
In recent years, the field of combinatorial optimization has witnessed a true tsunami of "novel" metaheuristic methods, most of them based on a metaphor of some natural or man-made process. The behavior of virtually any species of insects, the flow of water, musicians playing together – it seems that no idea is too far-fetched to serve as inspiration to launch yet another metaheuristic. In this paper, we will argue that this line of research is threatening to lead the area of metaheuristics away from scientific rigor.
- ^ Fred Glover and Kenneth Sörensen (ed.). "Metaheuristics". Scholarpedia. "A large (and increasing) number of publications focuses on the development of (supposedly) new metaheuristic frameworks based on metaphors. The list of natural or man-made processes that has been used as the basis for a metaheuristic framework now includes such diverse processes as bacterial foraging, river formation, biogeography, musicians playing together, electromagnetism, gravity, colonization by an empire, mine blasts, league championships, clouds, and so forth. An important subcategory is found in metaheuristics based on animal behavior. Ants, bees, bats, wolves, cats, fireflies, eagles, vultures, dolphins, frogs, salmon, vultures, termites, flies, and many others, have all been used to inspire a "novel" metaheuristic. [...] As a general rule, publication of papers on metaphor-based metaheuristics has been limited to second-tier journals and conferences, but some recent exceptions to this rule can be found. Sörensen (2013) states that research in this direction is fundamentally flawed. Most importantly, the author contends that the novelty of the underlying metaphor does not automatically render the resulting framework "novel". On the contrary, there is increasing evidence that very few of the metaphor-based methods are new in any interesting sense."
- ^ Jerry Swan, Steven Adriaensen, Mohamed Bishr, Edmund K. Burke, John A. Clark, Patrick De Causmaecker, Juanjo Durillo, Kevin Hammond, Emma Hart, Colin G. Johnson, Zoltan A. Kocsis, Ben Kovitz, Krzysztof Krawiec, Simon Martin, J. J. Merelo, Leandro L. Minku, Ender Özcan, Gisele L. Pappa, Erwin Pesch, Pablo Garcáa-Sánchez, Andrea Schaerf, Kevin Sim, Jim E. Smith, Thomas Stützle, Stefan Voß, Stefan Wagner, Xin Yao. "A Research Agenda for Metaheuristic Standardization". "Metaphors often inspire new metaheuristics, but without mathematical rigor, it can be hard to tell if a new metaheuristic is really distinct from a familiar one. For example, mathematically, 'Harmony search' turned out to be a simple variant of 'Evolution Strategies' even though the metaphors that inspired them were quite different. Formally describing state, representation, and operators allows genuine novelty to be distinguished from minor variation."
- ^ Alexander Brownlee and John R. Woodward (2015). "Why we fell out of love with algorithms inspired by nature". The Conversation.
- ^ Journal of Heuristic Policies on Heuristic Search Research. Springer. "Proposing new paradigms is only acceptable if they contain innovative basic ideas, such as those that are embedded in classical frameworks like genetic algorithms, tabu search, and simulated annealing. The Journal of Heuristics avoids the publication of articles that repackage and embed old ideas in methods that are claimed to be based on metaphors of natural or manmade systems and processes. These so-called "novel" methods employ analogies that range from intelligent water drops, musicians playing jazz, imperialist societies, leapfrogs, kangaroos, all types of swarms and insects and even mine blast processes (Sörensen, 2013). If a researcher uses a metaphor to stimulate his or her own ideas about a new method, the method must nevertheless be translated into metaphor-free language, so that the strategies employed can be clearly understood, and their novelty is made clearly visible. (See items 2 and 3 below.) Metaphors are cheap and easy to come by. Their use to "window dress" a method is not acceptable."
- K.N. Krishnanand and D. Ghose (2005). Detection of multiple source locations using a glowworm metaphor with applications to collective robotics. IEEE Swarm Intelligence Symposium, Pasadena, California, USA, pp. 84– 91. doi:10.1109/SIS.2005.1501606
- K.N. Krishnanand and D. Ghose. (2006). Glowworm swarm based optimization algorithm for multimodal functions with collective robotics applications. Multi-agent and Grid Systems, 2(3):209- 222.
- K.N. Krishnanand and D. Ghose. (2009) Glowworm swarm optimization for simultaneous capture of multiple local optima of multimodal functions. Swarm Intelligence, 3(2):87- 124. doi:10.1007/s11721-008-0021-5
- K.N. Krishnanand and D. Ghose. (2008). Theoretical foundations for rendezvous of glowworm-inspired agent swarms at multiple locations. Robotics and Autonomous Systems, 56(7):549- 569. doi:10.1016/j.robot.2007.11.003
- Prasad, Bhanu (2008). Studies in Fuzziness and Soft Computing, Soft Computing Applications in Industry, Volume 226/2008, 165- 87, doi:10.1007/978-3-540-77465-5