Jump to content

Cluster graph

From Wikipedia, the free encyclopedia
This is an old revision of this page, as edited by Rjwilmsi (talk | contribs) at 10:58, 7 August 2016 (Related graph classes: Journal cites, Added 1 doi to a journal cite using AWB (12066)). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.
A cluster graph with clusters (complete subgraphs) of sizes 1, 2, 3, 4, 4, 5, and 6

In graph theory, a branch of mathematics, a cluster graph is a graph formed from the disjoint union of complete graphs. Equivalently, a graph is a cluster graph if and only if it has no three-vertex induced path; for this reason, the cluster graphs are also called P3-free graphs. They are the complement graphs of the complete multipartite graphs.[1]

Every cluster graph is a block graph, a cograph, and a claw-free graph.[1] The Turán graphs are complement graphs of cluster graphs, with all complete subgraphs of equal or nearly-equal size. The locally clustered graph (graphs in which every neighborhood is a cluster graph) are the diamond-free graphs, another family of graphs that contains the cluster graphs.

When a cluster graph is formed from cliques that are all the same size, the overall graph is a homogeneous graph, meaning that every isomorphism between two of its induced subgraphs can be extended to an automorphism of the whole graph. With only two exceptions, the cluster graphs and their complements are the only finite homogeneous graphs,[2] and infinite cluster graphs also form one of only a small number of different types of countably infinite homogeneous graphs.[3]

Computational problems

A subcoloring of a graph is a partition of its vertices into induced cluster graphs. Thus, the cluster graphs are exactly the graphs of subchromatic number 1.[4]

The computational problem of finding a small set of edges to add or remove from a graph to transform it into a cluster graph is called cluster editing. It is NP-complete[5] but fixed-parameter tractable.[6]

References

  1. ^ a b Cluster graphs, Information System on Graph Classes and their Inclusions, accessed 2016-06-26.
  2. ^ Gardiner, A. (1976), "Homogeneous graphs", Journal of Combinatorial Theory, Series B, 20 (1): 94–102, doi:10.1016/0095-8956(76)90072-1, MR 0419293.
  3. ^ Lachlan, A. H.; Woodrow, Robert E. (1980), "Countable ultrahomogeneous undirected graphs", Transactions of the American Mathematical Society, 262 (1): 51–94, doi:10.2307/1999974, MR 0583847.
  4. ^ Albertson, M. O.; Jamison, R. E.; Hedetniemi, S. T.; Locke, S. C. (1989), "The subchromatic number of a graph", Discrete Mathematics, 74 (1–2): 33–49, doi:10.1016/0012-365X(89)90196-9.
  5. ^ Shamir, Ron; Sharan, Roded; Tsur, Dekel (2004), "Cluster graph modification problems", Discrete Applied Mathematics, 144 (1–2): 173–182, doi:10.1016/j.dam.2004.01.007, MR 2095392.
  6. ^ Böcker, Sebastian; Baumbach, Jan (2013), "Cluster editing", The nature of computation, Lecture Notes in Comput. Sci., vol. 7921, Springer, Heidelberg, pp. 33–44, doi:10.1007/978-3-642-39053-1_5, MR 3102002.