Tree stack automaton
This article, Tree stack automaton, has recently been created via the Articles for creation process. Please check to see if the reviewer has accidentally left this template after accepting the draft and take appropriate action as necessary.
Reviewer tools: Inform author |
Comment: The article must be built from information found in third-party sources (journals, books). Those sources must be referenced in-line with the text they support. No un-referenced material is allowed. LaMona (talk) 19:19, 30 June 2016 (UTC)
A tree stack automaton[a] (plural: tree stack automata) is a formalism considered in automata theory. It is a finite state automaton with the additional ability to manipulate a tree-shaped stack. It is an automaton with storage[2] whose storage roughly resembles the configurations of a thread automaton. A restricted class of tree stack automata recognises exactly the languages generated by multiple context-free grammars[3] (or linear context-free rewriting systems).
Definition
Tree stack

For a finite and non-empty set Γ, a tree stack over Γ is a tuple (t, p) where
- t is a partial function from strings of positive integers to the set Γ ∪ {@} with prefix-closed[b] domain (called tree),
- @ (called bottom symbol) is not in Γ and appears exactly at the root of t, and
- p is an element of the domain of t (called stack pointer).
The set of all tree stacks over Γ is denoted by TS(Γ).
The set of predicates on TS(Γ), denoted by Pred(Γ), contains the following unary predicates:
- true which is true for any tree stack over Γ,
- bottom which is true for tree stacks whose stack pointer points to the bottom symbol, and
- equals(γ) which is true for some tree stack (t, p) if t(p) = γ,
for every γ ∈ Γ.
The set of instructions on TS(Γ), denoted by Instr(Γ), contains the following partial functions:
- id: TS(Γ) → TS(Γ) which is the identity function on TS(Γ),
- pushn,γ: TS(Γ) → TS(Γ) which adds for a given tree stack (t,p) a pair (pn ↦ γ) to the tree t and sets the stack pointer to pn (i.e. it pushes γ to the n-th child position) if pn is not yet in the domain of t,
- upn: TS(Γ) → TS(Γ) which replaces the current stack pointer p by pn (i.e. it moves the stack pointer to the n-th child position) if pn is in the domain of t,
- down: TS(Γ) → TS(Γ) which removes the last symbol from the stack pointer (i.e. it moves the stack pointer to the parent position), and
- setγ: TS(Γ) → TS(Γ) which replaces the symbol currently under the stack pointer by γ,
for every positive integer n and every γ ∈ Γ.
Tree stack automata
A tree stack automaton is a 6-tuple A = (Q, Γ, Σ, qi, δ, Qf) where
- Q, Γ, and Σ are finite sets (whose elements are called states, stack symbols, and input symbols, respectively),
- qi ∈ Q (the initial state),
- δ ⊆fin. Q × (Σ ∪ {ε}) × Pred(Γ) × Instr(Γ) × Q (whose elements are called transitions), and
- Qf ⊆ TS(Γ) (whose elements are called final states).
A configuration of A is a tuple (q, c, w) where
- q is a state (the current state),
- c is a tree stack (the current tree stack), and
- w is a word over Σ (the remaining word to be read).
A transition τ = (q1, u, p, f, q2) is applicable to a configuration (q, c, w) if
- q1 = q,
- p is true on c, and
- f is defined for c.
The transition relation of A is the binary relation ⊢ on configurations of A that is the union of all the relations ⊢τ for a transition τ = (q1, u, p, f, q2) where, whenever τ is applicable to (q, c, w), we have (q, c, w) ⊢τ (q2, f(c), v) and v is obtained from w by removing the prefix u.
The language of A is the set of all words w for which there is some state q ∈ Qf and some tree stack c such that (qi, ci, w) ⊢* (q, c, ε) where
- ⊢* is the reflexive transitive closure of ⊢ and
- ci = (ti, ε) such that ti assigns for ε the symbol @ and is undefined otherwise.
Related formalisms
Tree stack automata are equivalent to Turing machines.
A tree stack automaton is called k-restricted for some positive natural number k if, during any run of the automaton, any position of the tree stack is accessed at most k times from below.
1-restricted tree stack automata are equivalent to pushdown automata and therefore also to context-free grammars. k-restricted tree stack automata are equivalent to linear context-free rewriting systems and multiple context-free grammars of fan-out at most k (for every positive integer k).[3]
Notes
References
- ^ Golubski, Wolfgang and Lippe, Wolfram-M. (1990). Tree-stack automata. Proceedings of the 15th Symposium on Mathematical Foundations of Computer Science (MFCS 1990). Lecture Notes in Computer Science, Vol. 452, pages 313–321, doi:10.1007/BFb0029624.
- ^ Scott, Dana (1967). Some Definitional Suggestions for Automata Theory. Journal of Computer and System Sciences, Vol. 1(2), pages 187–212, doi:10.1016/s0022-0000(67)80014-x.
- ^ a b Denkinger, Tobias (2016). An automata characterisation for multiple context-free languages. Proceedings of the 20th International Conference on Developments in Language Theory (DLT 2016). Lecture Notes in Computer Science, Vol. 9840, pages 138–150, doi:10.1007/978-3-662-53132-7_12.
This article, Tree stack automaton, has recently been created via the Articles for creation process. Please check to see if the reviewer has accidentally left this template after accepting the draft and take appropriate action as necessary.
Reviewer tools: Inform author |