Jump to content

Semantic Sensor Web

From Wikipedia, the free encyclopedia
This is an old revision of this page, as edited by Yaron K. (talk | contribs) at 15:55, 22 July 2016 (Real-time extension, sensor wiki enablement via "Sensing Cloud": Removed this entire section - it's long, but it's entirely forward-looking, and not of it seems to have come to fruition). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

The Semantic Sensor Web (SSW) is a marriage of sensor and Semantic Web technologies. The encoding of sensor descriptions and sensor observation data with Semantic Web languages enables more expressive representation, advanced access, and formal analysis of sensor resources. The SSW annotates sensor data with spatial, temporal, and thematic semantic metadata. This technique builds on current standardization efforts within the Open Geospatial Consortium's Sensor Web Enablement (SWE)[1][2] and extends them with Semantic Web technologies to provide enhanced descriptions and access to sensor data.[3]

Semantic modeling and annotation of sensor data

Ontologies and other semantic technologies can be key enabling technologies for sensor networks because they will improve semantic interoperability and integration, as well as facilitate reasoning, classification and other types of assurance and automation not included in the Open Geospatial Consortium (OGC) standards. A semantic sensor network will allow the network, its sensors and the resulting data to be organised, installed and managed, queried, understood and controlled through high-level specifications. Ontologies for sensors provide a framework for describing sensors. These ontologies allow classification and reasoning on the capabilities and measurements of sensors, provenance of measurements and may allow reasoning about individual sensors as well as reasoning about the connection of a number of sensors as a macroinstrument. The sensor ontologies, to some degree, reflect the OGC standards and, given ontologies that can encode sensor descriptions, understanding how to map between the ontologies and OGC models is an important consideration. Semantic annotation of sensor descriptions and services that support sensor data exchange and sensor network management will serve a similar purpose as that espoused by semantic annotation of Web services. This research is conducted through the W3C Semantic Sensor Network Incubator Group (SSN-XG) activity.

W3C Semantic Sensor Networks

The World Wide Web Consortium (W3C) initiated the Semantic Sensor Networks Incubator Group (SSN-XG) to develop the Semantic Sensor Network (SSN) ontology, intended to model sensor devices, systems, processes, and observations. The Incubator Group later transitioned into the Semantic Sensor Networks Community Group.

The Semantic Sensor Network (SSN) ontology enables expressive representation of sensors, sensor observations, and knowledge of the environment. The SSN ontology is encoded in the Web Ontology Language (OWL). A number of projects have used it for improved management of sensor data on the Web, involving annotation, integration, publishing, and search.[4]

Context

Sensors around the globe currently collect avalanches of data about the world. The rapid development and deployment of sensor technology is intensifying the existing problem of too much data and not enough knowledge [1]. With a view to alleviating this glut, sensor data can be annotated with semantic metadata to increase interoperability between heterogeneous sensor networks, as well as to provide contextual information essential for situation awareness. Semantic web techniques can greatly help with the problem of data integration and discovery as it helps map between different metadata schema in a structured way.

See also

Further reading

  • Michael Compton, Payam Barnaghi, Luis Bermudez, Raul Garcia-Castro, Oscar Corcho, Simon Cox, John Graybeal, Manfred Hauswirth, Cory Henson, Arthur Herzog, Vincent Huang, Krzysztof Janowicz, W. David Kelsey, Danh Le Phuoc, Laurent Lefort, Myriam Leggieri, Holger Neuhaus, Andriy Nikolov, Kevin Page, Alexandre Passant, Amit Sheth, Kerry Taylor. 'The SSN Ontology of the W3C Semantic Sensor Network Incubator Group.' Journal of Web Semantics, 2012.[2]
  • Lefort, L., Henson, C., Taylor, K., Barnaghi, P., Compton, M., Corcho, O., Garcia-Castro, R., Graybeal, J., Herzog, A., Janowicz, K., Neuhaus, H., Nikolov, A., and Page, K.: Semantic Sensor Network XG Final Report, W3C Incubator Group Report (2011). [3]
  • Amit Sheth, Cory Henson, and Satya Sahoo, "Semantic Sensor Web," IEEE Internet Computing, July/August 2008, p. 78-83. [4]
  • Manfred Hauswirth and Stefan Decker, "Semantic Reality - Connecting the Real and the Virtual World," Microsoft SemGrail Workshop, Redmond, Washington, June 21–22, 2007. [5]
  • Cory Henson, Josh Pschorr, Amit Sheth, and Krishnaprasad Thirunarayan, “SemSOS: Semantic Sensor Observation Service,” International Symposium on Collaborative Technologies and Systems (CTS2009), Workshop on Sensor Web Enablement (SWE2009), Baltimore, Maryland, 2009. [6]

References

  1. ^ "Sensor Web Enablement DWG".
  2. ^ "New Generation Sensor Web Enablement". Sensors, Volume 11, Number 3. 2011. pp. 2652–2699.
  3. ^ "Semantic Sensor Web, IEEE Internet Computing, July/August. 2008".
  4. ^ SSN Applications