Projective bundle
In mathematics, a projective bundle is a fiber bundle whose fibers are projective spaces.
The projective bundle of a vector bundle
Every vector bundle over a variety X gives a projective bundle by taking the projective spaces of the fibers, but not all projective bundles arise in this way: there is an obstruction in the cohomology group H2(X,O*).
The projective bundle of a vector bundle E is the same thing as the Grassmann bundle of 1-planes in E.
The projective bundle P(E) of a vector bundle E is characterized by the universal property that says:[1]
- Given a morphism f: T → X, to factorize f through the projection map p: P(E) → X is to specify a line subbundle of f*E.
For example, taking f to be p, one gets the line subbundle O(-1) of p*E, called the tautological line bundle on P(E). Moreover, this O(-1) is a universal bundle in the sense that when a line bundle L gives a factorization f = p ∘ g, L is the pullback of O(-1) along g. See also Cone#O(1) for a more explicit construction of O(-1).
The projective bundle P(E) is stable under twisting E by a line bundle; precisely, given a line bundle L, there is the natural isomorphism:
such that [2] (In fact, one gets g by the universal property applied to the line bundle on the right.)
Cohomology ring
Let X be a complex smooth projective variety and E a complex vector bundle of rank r on it. Let p: P(E) → X be the projective bundle of E. Then the cohomology ring H*(P(E)) is an algebra over H*(X) through the pullback p*. Then the first Chern class ζ = c1(O(1)) generates H*(P(E)) with the relation
where ci(E) is the i-th Chern class of E. One interesting feature of this description is that one can define Chern classes as the coefficients in the relation; this is the approach taken by Grothendieck.
Over fields other than the complex field, the same description remains true with Chow ring in place of cohomology ring (stil assuming X is smooth). In particular, for Chow groups, there is the direct sum decomposition
As it turned out, this decomposition remains valid even if X is not smooth nor projective.[3]
See also
References
- ^ Hartshorne, Ch. II, Proposition 7.12.
- ^ Hartshorne, Ch. II, Lemma 7.9.
- ^ Fulton, Theorem 3.3.
- Elencwajg, G.; Narasimhan, M. S. (1983), "Projective bundles on a complex torus", Journal für die reine und angewandte Mathematik, 340: 1–5, doi:10.1515/crll.1983.340.1, ISSN 0075-4102, MR 0691957
- William Fulton. (1998), Intersection theory, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge., vol. 2 (2nd ed.), Berlin, New York: Springer-Verlag, ISBN 978-3-540-62046-4, MR 1644323
- Hartshorne, Robin (1977), Algebraic Geometry, Graduate Texts in Mathematics, vol. 52, New York: Springer-Verlag, ISBN 978-0-387-90244-9, MR 0463157