From Wikipedia, the free encyclopedia
In mathematics , the Kolmogorov extension theorem is a theorem that guarantees that a suitably "consistent" collection of finite-dimensional distributions will define a stochastic process . It is credited to the Soviet mathematician Andrey Nikolaevich Kolmogorov .
Statement of the theorem
Let
T
{\displaystyle T}
denote some interval (thought of as "time "), and let
n
∈
N
{\displaystyle n\in \mathbb {N} }
. For each
k
∈
N
{\displaystyle k\in \mathbb {N} }
and finite sequence of times
t
1
,
…
,
t
k
∈
T
{\displaystyle t_{1},\dots ,t_{k}\in T}
, let
ν
t
1
…
t
k
{\displaystyle \nu _{t_{1}\dots t_{k}}}
be a probability measure on
(
R
n
)
k
{\displaystyle (\mathbb {R} ^{n})^{k}}
. Suppose that these measures satisfy two consistency conditions:
for all permutations
π
{\displaystyle \pi }
of
{
1
,
…
,
k
}
{\displaystyle \{1,\dots ,k\}}
and measurable sets
F
i
⊆
R
n
{\displaystyle F_{i}\subseteq \mathbb {R} ^{n}}
,
ν
t
π
(
1
)
…
t
π
(
k
)
(
F
1
×
⋯
×
F
k
)
=
ν
t
1
…
t
k
(
F
π
−
1
(
1
)
×
⋯
×
F
π
−
1
(
k
)
)
;
{\displaystyle \nu _{t_{\pi (1)}\dots t_{\pi (k)}}\left(F_{1}\times \dots \times F_{k}\right)=\nu _{t_{1}\dots t_{k}}\left(F_{\pi ^{-1}(1)}\times \dots \times F_{\pi ^{-1}(k)}\right);}
for all measurable sets
F
i
⊆
R
n
{\displaystyle F_{i}\subseteq \mathbb {R} ^{n}}
,
ν
t
1
…
t
k
(
F
1
×
⋯
×
F
k
)
=
ν
t
1
…
t
k
t
k
+
1
(
F
1
×
⋯
×
F
k
×
R
n
)
.
{\displaystyle \nu _{t_{1}\dots t_{k}}\left(F_{1}\times \dots \times F_{k}\right)=\nu _{t_{1}\dots t_{k}t_{k+1}}\left(F_{1}\times \dots \times F_{k}\times \mathbb {R} ^{n}\right).}
Then there exists a probability space
(
Ω
,
F
,
P
)
{\displaystyle (\Omega ,{\mathcal {F}},\mathbb {P} )}
and a stochastic process
X
:
T
×
Ω
→
R
n
{\displaystyle X:T\times \Omega \to \mathbb {R} ^{n}}
such that
ν
t
1
…
t
k
(
F
1
×
⋯
×
F
k
)
=
P
(
X
t
1
∈
F
1
,
…
,
X
t
k
∈
F
k
)
{\displaystyle \nu _{t_{1}\dots t_{k}}\left(F_{1}\times \dots \times F_{k}\right)=\mathbb {P} \left(X_{t_{1}}\in F_{1},\dots ,X_{t_{k}}\in F_{k}\right)}
for all
t
i
∈
T
{\displaystyle t_{i}\in T}
,
k
∈
N
{\displaystyle k\in \mathbb {N} }
and measurable sets
F
i
⊆
R
n
{\displaystyle F_{i}\subseteq \mathbb {R} ^{n}}
, i.e.
X
{\displaystyle X}
has the
ν
t
1
…
t
k
{\displaystyle \nu _{t_{1}\dots t_{k}}}
as its finite-dimensional distributions.
Reference
Øksendal, Bernt (2003). Stochastic Differential Equations: An Introduction with Applications . Springer, Berlin. ISBN 3-540-04758-1.