Jump to content

Spatial normalization

From Wikipedia, the free encyclopedia
This is an old revision of this page, as edited by Mim.cis (talk | contribs) at 16:24, 21 March 2016 (Diffeomorphisms as Compositional Transformations of Coordinates). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

In neuroimaging, spatial normalization is an image processing step, more specifically an image registration method. Human brains differ in size and shape, and one goal of spatial normalization is to deform human brain scans so one location in one subject's brain scan corresponds to the same location in another subject's brain scan.

It is often performed in research-based functional neuroimaging where one wants to find common brain activation across multiple human subjects. The brain scan can be obtained from magnetic resonance imaging (MRI) or positron emission tomography (PET) scanners.

There are two steps in the spatial normalization process:

  • Specification/estimation of warp-field
  • Application of warp-field with resampling

The estimation of the warp-field can be performed in one modality, e.g., MRI, and be applied in another modality, e.g., PET, if MRI and PET scans exist for the same subject and they are coregistered.

Spatial normalization typically employs a 3-dimensional nonrigid transformation model (a "warp-field") for warping a brain scan to a template. The warp-field might be parametrized by basis functions such as cosine and polynomia.

Diffeomorphisms as Compositional Transformations of Coordinates

Alternatively, many advanced methods for spatial normalization are building on structure preserving transformations homeomorphisms and diffeomorphisms since they carry smooth submanifolds smoothly during transformation. Diffeomorphisms are generated in the modern field of Computational Anatomy based on flows since diffeomorphisms are not additive although they form a group, but a group under the law of funciton composition. For this reason, flows which generalize the ideas of additive groups allow for generating large deformations that preserve topology, providing 1-1 and onto transformations. Computational methods for generating such transformation are often called LDDMM which provide geodesic flows of diffeomorphisms as the main computational tool for connecting coordinate systems as in the the geodesic flows of Computational Anatomy.

There is a number of programs that implement both estimation and application of a warp-field. It is a part of the SPM and AIR programs.

See also