From Wikipedia, the free encyclopedia
The trigonometric functions (especially sine and cosine ) for real or complex square matrices occur in solutions of second-order systems of differential equations .[ 1] They are defined by the same Taylor series that hold for the trigonometric functions of real and complex numbers :[ 2]
sin
X
=
X
−
X
3
3
!
+
X
5
5
!
−
X
7
7
!
+
⋯
=
∑
n
=
0
∞
(
−
1
)
n
(
2
n
+
1
)
!
X
2
n
+
1
cos
X
=
I
−
X
2
2
!
+
X
4
4
!
−
X
6
6
!
+
⋯
=
∑
n
=
0
∞
(
−
1
)
n
(
2
n
)
!
X
2
n
{\displaystyle {\begin{aligned}\sin X&=X-{\frac {X^{3}}{3!}}+{\frac {X^{5}}{5!}}-{\frac {X^{7}}{7!}}+\cdots &=\sum _{n=0}^{\infty }{\frac {(-1)^{n}}{(2n+1)!}}X^{2n+1}\\\cos X&=I-{\frac {X^{2}}{2!}}+{\frac {X^{4}}{4!}}-{\frac {X^{6}}{6!}}+\cdots &=\sum _{n=0}^{\infty }{\frac {(-1)^{n}}{(2n)!}}X^{2n}\end{aligned}}}
with
X
n
{\displaystyle X^{n}}
being the
n
{\displaystyle n}
-th power of the matrix
X
{\displaystyle X}
and
I
{\displaystyle I}
being the unity matrix . Equivalently, they can be defined using the matrix equivalent of Euler's formula along with the matrix exponential ,
e
i
X
=
cos
X
+
i
sin
X
{\displaystyle e^{iX}=\cos X+i\sin X}
, yielding
sin
X
=
e
i
X
−
e
−
i
X
2
cos
X
=
e
i
X
+
e
−
i
X
2
i
.
{\displaystyle {\begin{aligned}\sin X&={e^{iX}-e^{-iX} \over 2}\\\cos X&={e^{iX}+e^{-iX} \over 2i}.\end{aligned}}}
Properties
The analog of the Pythagorean trigonometric identity holds:[ 2]
sin
2
X
+
cos
2
X
=
I
{\displaystyle \sin ^{2}X+\cos ^{2}X=I}
The analogs of the trigonometric addition formulas hold as well:[ 2]
sin
(
X
±
Y
)
=
sin
X
cos
Y
±
cos
X
sin
Y
cos
(
X
±
Y
)
=
cos
X
cos
Y
∓
sin
X
sin
Y
{\displaystyle {\begin{aligned}\sin(X\pm Y)=\sin X\cos Y\pm \cos X\sin Y\\\cos(X\pm Y)=\cos X\cos Y\mp \sin X\sin Y\end{aligned}}}
References
^ "Efficient Algorithms for the Matrix Cosine and Sine". Numerical Analysis Report (461). Manchester Centre for Computational Mathematics. 2005.
^ a b c Nicholas J. Higham (2008). Functions of matrices: theory and computation . pp. 287f. ISBN 9780898717778 .