Jump to content

User:Maschen/wave function

From Wikipedia, the free encyclopedia
This is an old revision of this page, as edited by Maschen (talk | contribs) at 12:07, 18 February 2016. The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

(CRUDE) PROVISIONAL RESTRUCTURE of wave function using this version

Status of wavefunctions

History

first introduction of concept, modern interpretations

In the postulates of QM

Some (not all) of the postulates of QM are: Wavefunction contains all information about system, governed by the SE, wavefunction collapse

Wave functions in nonrelativistic QM

Interpretations

probability interpretation

mention others, hint a forward reference to the field theoretical formulation

Wave particle duality

Intuitive heuristics about the De Broglie relations and wave profile (momentum, wavelength, energy, kinetic energy, curvature) for one spinless particle in 1d

Position and momentum representations

Position and momentum space wavefunctions in 3d, Fourier transforms, introduce Dirac notation here

Spin

spin s particle in 3d, 2s+1 complex numbers, or a 2s+1 column vector, wavefunctions as spinors or tensors for particles, occurrence in relativistic QM and QFT

Other observables

Many particle systems

symmetry (bosons), antisymmetry (fermions), nonsymmetry (distinguishable), The Pauli principle, implications from them

Units

Beyond nonrelativistic QM

Relativistic quantum mechanics

Field operators in quantum field theory

brief discussion of advantages of field operators, point to QFT articles

non relativistic then relativistic field theory

Examples

SUMMARIZE

Prototypical examples in physics

Some examples of wave functions for specific applications include:

Chemistry

Atomic and molecular orbitals

In particle physics

wave function of quarks, leptons

In nuclear physics

In condensed matter physics

Ontology

(use what is in current article)

See also

Remarks

Notes

References

  • Atkins, P. W. (1974). Quanta: A Handbook of Concepts. ISBN 0-19-855494-X. {{cite book}}: Invalid |ref=harv (help)
  • Arons, A. B.; Peppard, M. B. (1965). "Einstein's proposal of the photon concept: A translation of the Annalen der Physik paper of 1905" (PDF). American Journal of Physics. 33 (5): 367. Bibcode:1965AmJPh..33..367A. doi:10.1119/1.1971542. {{cite journal}}: Invalid |ref=harv (help)
  • Bohr, N. (1985). J. Kalckar (ed.). Niels Bohr - Collected Works: Foundations of Quantum Physics I (1926 - 1932). Vol. 6. Amsterdam: North Holland. ISBN 9780444532893. {{cite book}}: Invalid |ref=harv (help)
  • Born, M. (1926a). "Zur Quantenmechanik der Stoßvorgange". Z. Phys. 37: 863–867. Bibcode:1926ZPhy...37..863B. doi:10.1007/bf01397477. {{cite journal}}: Invalid |ref=harv (help)
  • Born, M. (1926b). "Quantenmechanik der Stoßvorgange". Z. Phys. 38: 803–827. Bibcode:1926ZPhy...38..803B. doi:10.1007/bf01397184. {{cite journal}}: Invalid |ref=harv (help)
  • Born, M. (1927). "Physical aspects of quantum mechanics". Nature. 119: 354–357. Bibcode:1927Natur.119..354B. doi:10.1038/119354a0. {{cite journal}}: Invalid |ref=harv (help)
  • Born, M. (1954). "The statistical interpretation of quantum mechanics" (PDF). Nobel Lecture. December 11, 1954.
  • de Broglie, L. (1923). "Radiations—Ondes et quanta" [Radiation—Waves and quanta]. Comptes Rendus (in French). 177: 507–510, 548, 630. {{cite journal}}: Invalid |ref=harv (help) Online copy (French) Online copy (English)
  • de Broglie, L. (1960). Non-linear Wave Mechanics: a Causal Interpretation. Amsterdam: Elsevier. {{cite book}}: Invalid |ref=harv (help)
  • Camilleri, K. (2009). Heisenberg and the Interpretation of Quantum Mechanics: the Physicist as Philosopher. Cambridge UK: Cambridge University Press. ISBN 978-0-521-88484-6. {{cite book}}: Invalid |ref=harv (help)

Further reading