In mathematics, matrix addition is the operation of adding two matrices by adding the corresponding entries together. However, there are other operations which could also be considered as a kind of addition for matrices, the direct sum and the Kronecker sum.
Entrywise sum
Two matrices must have an equal number of rows and columns to be added.[1] The sum of two matrices A and B will be a matrix which has the same number of rows and columns as do A and B. The sum of A and B, denoted A + B, is computed by adding corresponding elements of A and B:[2][3]
For example:
We can also subtract one matrix from another, as long as they have the same dimensions. A − B is computed by subtracting corresponding elements of A and B, and has the same dimensions as A and B. For example:
Direct sum
Another operation, which is used less often, is the direct sum (denoted by ⊕). Note the Kronecker sum is also denoted ⊕; the context should make the usage clear. The direct sum of any pair of matrices A of size m × n and B of size p × q is a matrix of size (m + p) × (n + q) defined as [4][2]
For instance,
The direct sum of matrices is a special type of block matrix, in particular the direct sum of square matrices is a block diagonal matrix.
The Kronecker sum is different from the direct sum but is also denoted by ⊕. It is defined using the Kronecker product ⊗ and normal matrix addition. If A is n-by-n, B is m-by-m and denotes the k-by-k identity matrix then the Kronecker sum is defined by: