Jump to content

Bitruncated tesseractic honeycomb

From Wikipedia, the free encyclopedia
This is an old revision of this page, as edited by Tomruen (talk | contribs) at 04:01, 27 January 2016 (Related honeycombs). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.
Bitruncated tesseractic honeycomb
(No image)
Type Uniform 4-honeycomb
Schläfli symbol t1,2{4,3,3,4} or 2t{4,3,3,4}
t1,2{4,31,1} or 2t{4,31,1}
t2,3{4,31,1}
q2{4,3,3,3,4}
Coxeter-Dynkin diagram




=

4-face type Bitruncated tesseract
Truncated 16-cell
Cell type Octahedron
Truncated tetrahedron
Truncated octahedron
Face type {3}, {4}, {6}
Vertex figure
Square-pyramidal pyramid
Coxeter group = [4,3,3,4]
= [4,31,1]
= [31,1,1,1]
Dual
Properties vertex-transitive

In four-dimensional Euclidean geometry, the bitruncated tesseractic honeycomb is a uniform space-filling tessellation (or honeycomb) in Euclidean 4-space. It is constructed by a bitruncation of a tesseractic honeycomb. It is also called a cantic quarter tesseractic honeycomb from its q2{4,3,3,4} construction.

Other names

  • Bitruncated tesseractic tetracomb (batitit)

C4 honeycombs B4 honeycombs D4 honeycombs

See also

Regular and uniform honeycombs in 4-space:

Notes

References

  • Kaleidoscopes: Selected Writings of H. S. M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6 [1]
    • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45] See p318 [2]
  • George Olshevsky, Uniform Panoploid Tetracombs, Manuscript (2006) (Complete list of 11 convex uniform tilings, 28 convex uniform honeycombs, and 143 convex uniform tetracombs)
  • Klitzing, Richard. "4D Euclidean tesselations#4D". x3x3x *b3o *b3o , x3x3x *b3o4o , o3x3o *b3x4o , o4x3x3o4o - batitit - O92
  • Conway JH, Sloane NJH (1998). Sphere Packings, Lattices and Groups (3rd ed.). ISBN 0-387-98585-9.
Space Family / /
E2 Uniform tiling 0[3] δ3 3 3 Hexagonal
E3 Uniform convex honeycomb 0[4] δ4 4 4
E4 Uniform 4-honeycomb 0[5] δ5 5 5 24-cell honeycomb
E5 Uniform 5-honeycomb 0[6] δ6 6 6
E6 Uniform 6-honeycomb 0[7] δ7 7 7 222
E7 Uniform 7-honeycomb 0[8] δ8 8 8 133331
E8 Uniform 8-honeycomb 0[9] δ9 9 9 152251521
E9 Uniform 9-honeycomb 0[10] δ10 10 10
E10 Uniform 10-honeycomb 0[11] δ11 11 11
En−1 Uniform (n−1)-honeycomb 0[n] δn n n 1k22k1k21