Jump to content

p-adic gamma function

From Wikipedia, the free encyclopedia
This is an old revision of this page, as edited by Jonesey95 (talk | contribs) at 03:07, 26 December 2015 (Adding display-editors parameter to fix Help:CS1_errors#displayeditors using AutoEd). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

In mathematics, the p-adic gamma function Γp(s) is a function of a p-adic variable s analogous to the gamma function. It was first explicitly defined by Morita (1975), though Boyarsky (1980) pointed out that Dwork (1964) implicitly used the same function. Diamond (1977) defined a p-adic analog Gp(s) of log Γ(s). Overholtzer (1952) had previously given a definition of a different p-adic analogue of the gamma function, but his function does not have satisfactory properties and is not used much.

Definition

The p-adic gamma function is the unique continuous function of a p-adic integer s such that

for positive integers s, where the product is restricted to integers i not divisible by p.

See also

References

  • Boyarsky, Maurizio (1980), "p-adic gamma functions and Dwork cohomology", Transactions of the American Mathematical Society, 257 (2): 359–369, doi:10.2307/1998301, ISSN 0002-9947, JSTOR 1998301, MR 0552263
  • Diamond, Jack (1977), "The p-adic log gamma function and p-adic Euler constants", Transactions of the American Mathematical Society, 233: 321–337, ISSN 0002-9947, JSTOR 1997840, MR 0498503
  • Diamond, Jack (1984), "p-adic gamma functions and their applications", in Chudnovsky, David V.; Chudnovsky, Gregory V.; Cohn, Henry; et al. (eds.), Number theory (New York, 1982), Lecture Notes in Math., vol. 1052, Berlin, New York: Springer-Verlag, pp. 168–175, doi:10.1007/BFb0071542, ISBN 978-3-540-12909-7, MR 0750664
  • Dwork, Bernard (1964), "On the zeta function of a hypersurface. II", Annals of Mathematics. Second Series, 80: 227–299, ISSN 0003-486X, JSTOR 1970392, MR 0188215
  • Morita, Yasuo (1975), "A p-adic analogue of the Γ-function", Journal of the Faculty of Science. University of Tokyo. Section IA. Mathematics, 22 (2): 255–266, ISSN 0040-8980, MR 0424762
  • Overholtzer, Gordon (1952), "Sum functions in elementary p-adic analysis", American Journal of Mathematics, 74: 332–346, ISSN 0002-9327, JSTOR 2371998, MR 0048493