Even circuit theorem
In extremal graph theory, the even circuit theorem is a result of Paul Erdős according to which an n-vertex graph that does not have a simple cycle of length 2k can only have O(n1 + 1/k) edges. For instance, 4-cycle-free graphs have O(n3/2) edges, 6-cycle-free graphs have O(n4/3) edges, etc. The result was stated without proof by Erdős in 1964.[1] Bondy & Simonovits (1974) proved a stronger version of the theorem, according to which, for n-vertex graphs with Ω(n1 + 1/k) edges, all even cycle lengths between 2k and 2kn1/k occur.[2]
The bound of Erdős's theorem is tight up to constant factors for some small values of k: for k = 2, 3, or 5, there exist graphs with Ω(n1 + 1/k) edges that have no 2k-cycle.[2]
Because a 4-cycle is a complete bipartite graph, the maximum number of edges in a 4-cycle-free graph can be seen as a special case of the Zarankiewicz problem on forbidden complete bipartite graphs, and the even circuit theorem for this case can be seen as a special case of the Kővári–Sós–Turán theorem. More precisely, in this case it is known that the maximum number of edges in a 4-cycle-free graph is
Erdős & Simonovits (1982) conjecture that, more generally, the maximum number of edges in a 2k-cycle-free graph is
However, the best proven upper bound on this number of edges, for general k, has a larger constant factor: it is
References
- ^ Erdős, P. (1964), "Extremal problems in graph theory" (PDF), Theory of Graphs and its Applications (Proc. Sympos. Smolenice, 1963), Publ. House Czechoslovak Acad. Sci., Prague, pp. 29–36, MR 0180500.
- ^ a b Bondy, J. A.; Simonovits, M. (1974), "Cycles of even length in graphs" (PDF), Journal of Combinatorial Theory, Series B, 16: 97–105, MR 0340095.
- ^ Erdős, P.; Simonovits, M. (1982), "Compactness results in extremal graph theory" (PDF), Combinatorica, 2 (3): 275–288, doi:10.1007/BF02579234, MR 0698653.
- ^ Pikhurko, Oleg (2012), "A note on the Turán function of even cycles", Proceedings of the American Mathematical Society, 140 (11): 3687–3692, doi:10.1090/S0002-9939-2012-11274-2, MR 2944709.