Joint Approximation Diagonalization of Eigen-matrices
Appearance
Joint Approximation Diagonalisation of Eigenmatrices (JADE) is an algorithm for independent component analysis that separates observed mixed signals into latent source signals by exploiting fourth order moments.[1]
- ^ Cardoso, Jean-François (Jan. 1999). "High-order contrasts for independent component analysis". Neural Computation. 11 (1): pp. 157—192. doi:10.1162/089976699300016863.
{{cite journal}}
:|page=
has extra text (help); Check date values in:|date=
(help)