Population protocol
It is proposed that this article be deleted because of the following concern:
If you can address this concern by improving, copyediting, sourcing, renaming, or merging the page, please edit this page and do so. You may remove this message if you improve the article or otherwise object to deletion for any reason. Although not required, you are encouraged to explain why you object to the deletion, either in your edit summary or on the talk page. If this template is removed, do not replace it. This message has remained in place for seven days, so the article may be deleted without further notice. Find sources: "Population protocol" – news · newspapers · books · scholar · JSTOR Nominator: Please consider notifying the author/project: {{subst:proposed deletion notify|Population protocol|concern=No assertion of importance whatsoever.}} ~~~~ Timestamp: 20151003202145 20:21, 3 October 2015 (UTC) Administrators: delete |
A population protocol is a distributed computing model formed by resource-limited mobile agents which meet in a random way according to an interaction graph. Functions are computed by updating the state of agents whenever they meet based on the previous value of the states, and the result of the computation can be read in the states of the agents once the computation has converged.
Population protocols were introduced by Dana Angluin et al.[1] as one of the first models of computation to be fully decentralized and to involve agents with highly limited resources, e.g., those found in sensor networks. Since then, this abstract computation model found applications in robotics[2] and chemistry[3].
References
- ^ Dana Angluin, James Aspnes, Zoë Diamadi, Michael J. Fischer, René Peralta. Computation in networks of passively mobile finite-state sensors. Distributed Computing, 2006. [1]
- ^ Gregory Dudek, Michael Jenkin. Computational Principles of Mobile Robotics, Chapter 10.
- ^ Ho-Lin Chen, David Doty, David Soloveichik. Deterministic function computation with chemical reaction networks. Natural Computing, 2014. [2]