Reliability theory of aging and longevity
Certain historical revisions of this page may meet criterion RD1 for revision deletion, as they contain significant copyright violations of http://longevity-science.org/SAGE-KE-03.pdf or similar source (Copyvios report) that have been removed in the meantime.
Note to admins: In case of doubt, remove this template and post a message asking for review at WT:CP. With this script, go to the history with auto-selected revisions. Note to the requestor: Make sure the page has already been reverted to a non-infringing revision or that infringing text has been removed or replaced before submitting this request. This template is reserved for obvious cases only, for other cases refer to Wikipedia:Copyright problems. Note to others: Please do not remove this template until an administrator has reviewed it. |
![]() | This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these messages)
|
The reliability theory of aging is an attempt to apply the principles of reliability theory to human biology. The theory was published in Russian by Leonid A. Gavrilov and Natalia S. Gavrilova as Biologiia prodolzhitelʹnosti zhizni in 1986, and in English translation as The Biology of Life Span: A Quantitative Approach in 1991.[1][2]
The hypothesis is based on the unusual premise that humans are born in a highly defective state. According to the model, this is then made worse by environmental and mutational damage; redundancy allows the organism to survive for a while.[3]
References
- ^ Leonid A. Gavrilov, Natalia S. Gavrilova; V.P. Skulachev (ed.); John and Liliya Payne (trans.) (1991). The Biology of Life Span: A Quantitative Approach. Chur; New York: Harwood Academic Publishers. ISBN 9783718649839.
- ^ A.J.S. Rayl (May 2002). Aging, in Theory: A Personal Pursuit. Do body system redundancies hold the key? The Scientist 16 (10): 20.
- ^ [s.n.] (1 September 2004). Engineering and Aging: The Best Is Yet to Be. IEEE Spectrum. Archived 23 April 2014.
Further reading
- Gavrilov LA, Gavrilova NS. Reliability Theory of Aging and Longevity. In: Masoro E.J. & Austad S.N.. (eds.): Handbook of the Biology of Aging, Sixth Edition. Academic Press. San Diego, CA, USA, 2006, 3-42. ISBN 0-12-088387-2
- Gavrilov LA, Gavrilova NS. Models of Systems Failure in Aging. In: P Michael Conn (Editor): Handbook of Models for Human Aging, Burlington, MA : Elsevier Academic Press, 2006. 45-68. ISBN 0-12-369391-8.
- Gavrilov LA, Gavrilova NS. Why We Fall Apart. Engineering's Reliability Theory Explains Human Aging. IEEE Spectrum, 2004, 41(9): 30-35.
- Gavrilov LA, Gavrilova NS. The Reliability-Engineering Approach to the Problem of Biological Aging. Annals of the New York Academy of Sciences, 2004, 1019: 509-512. PMID 15247076
- Gavrilov L.A., Gavrilova N.S. The quest for a general theory of aging and longevity. Science's SAGE KE (Science of Aging Knowledge Environment) for 16 July 2003; Vol. 2003, No. 28, 1-10. http://sageke.sciencemag.org, PMID 12867663
- Gavrilov L.A., Gavrilova N.S. The reliability theory of aging and longevity. Journal of Theoretical Biology, 2001, 213(4): 527-545. doi:10.1006/jtbi.2001.2430 PMID 11742523
- Abernethy, John. Gompertzian mortality originates in the winding-down of the mitotic clock. Journal of Theoretical Biology, 1998, 192, 419-435.
- Gavrilov, L.A. A mathematical model of the aging of animals. Proc. Acad. Sci. USSR [Doklady Akademii Nauk SSSR], 1978, 238(2): 490-492. English translation by Plenum Publ Corp: pp.53-55. PMID 624242
- Abernethy JD. The exponential increase in mortality rate with age attributed to wearing-out of biological components. Journal of Theoretical Biology, 1979, 80, 333-354.
- Gavrilov, L.A., Gavrilova, N.S., Yaguzhinsky, L.S. The main regularities of animal aging and death viewed in terms of reliability theory. J. General Biology [Zhurnal Obschey Biologii], 1978, 39(5): 734-742. PMID 716614
- Witten, T.M., Investigating the aging mammalian system: Cellular levels and beyond, Proc. 25th Annual Meeting of the Society for General Systems Research, (1981) 309-315.
- Witten, T.M., A return to time, cells, systems, and aging: I. Rethinking the concepts of senescence in mammalian systems, Mech. Aging and Dev., 21(1983)69-81.
- Witten, T.M., A return to time, cells, systems, and aging: II. Relational and reliability theoretic aspects of senescence in mammalian systems, Mech. Aging and Dev., 27 (1984) 323-340.
- Witten, T.M., Reliability theoretic methods and aging: Critical elements, hierarchies, and longevity---Interpreting survival curves, (in) The Molecular Biology of Aging (eds.) A. Woodhead, A. Blackett, and R. Setlow (Plenum Press, N.Y. 1985).
- Witten, T.M., A return to time, cells, systems and aging: III. Critical elements, hierarchies, and Gompertzian dynamics, Mech. Ageing and Dev., 32 (1985) 141-177.
- Witten, T.M., A return to time, cells, system, and aging: IV. Further thoughts on Gompertzian survival dynamics---The neonatal years, Mech. Aging and Dev., 33 (1985) 177-190.
- Witten, T.M., Information content of biological survival curves arising in aging experiments: Some further thoughts, (in) Evolution of Aging Processes in Animals (ed.) A. Woodhead and K.H. Thompson (Plenum Press, N.Y., 1987).
- Witten, T.M., A return to time, cells, systems, and aging: V. Further thoughts on Gompertzian survival dynamics --- the geriatric years, Mech. Aging and Dev., 46(1988) 175-200.
External links
- Reliability Theory of Aging and Longevity - Power-Point Presentation of invited lecture at the Buck Institute for Age Research, Novato, California, USA, August 4, 2006.
- Reliability Theory of Aging and Longevity - abstract of invited lecture at the University of California, Santa Cruz. Applied Mathematics & Statistics (AMS) and CSTAR Research Seminars, October 10, 2005.
- Reliability Theory of Aging and Longevity - Power-Point Presentation of invited lecture at the University of Chicago. The Ecology and Evolution Natural History Seminar, Department of Ecology and Evolution, May 10, 2005.
- Reliability-Engineering Approach to the Problem of Biological Aging - invited presentation at the 10th Congress of the International Association of Biomedical Gerontology, Cambridge University, England, September 19-23, 2003.
Media coverage
- “Aging, in Theory: A Personal Pursuit. Do body system redundancies hold the key? “ The Scientist, 16(10): 20, May 13, 2002
- “Engineering and Aging: The Best Is Yet to Be“ IEEE Spectrum - September 2004, 41(9): 10.
- “Human Reliability. We break down just like machines“ Industrial Engineer - November 2004, 36(11): 66
- Scientists Have Found the Gene That Decides How Long We Live